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Abstract
Recent advances in generative decoding models have
shown that complex visual scenes can be reconstructed
from brain activity. However, current models rely on an
intermediate step that maps the brain data to rich im-
age and text feature spaces, resulting in overly large and
computationally intensive models. This intermediate pro-
cess may also cause loss of information deriving from
the selectivity and receptive field location of individual
brain units. In this work, we explore the capabilities of
visual decoding in the absence of intermediate represen-
tations. We propose NeuroAdapter, a simple modular
framework that directly encodes the neural data from dif-
ferent brain regions to condition the diffusion process.
To avoid overfitting, our model incorporates a random
token-masking strategy. We train our model on the 7T-
fMRI Natural Scenes Dataset (NSD) and evaluate it on
multiple metrics. NeuroAdapter excels at capturing high-
level semantic visual content from fMRI signals, outper-
forming more complex models. Our model demonstrates
a promising direction for scaling decoding models up to
whole-brain image reconstruction.
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Introduction
Current approaches to decoding visual content from the brain
(Chen et al., 2022; Lin et al., 2022; Takagi & Nishimoto, 2023;
Ozcelik & VanRullen, 2023; Scotti et al., 2023; Li et al., 2025)
that leverage image-generative models typically implement a
two-step process: (1) Brain activity is first mapped to multiple
intermediate representations in image or text space (such as
Clip; Radford et al., 2021). (2) These intermediate represen-
tations are passed to an image generator for reconstruction.
Faithful reconstruction of perceived images critically depends
on the ability of intermediate network representations to ex-
tract image information from neural activity. A recent study
found that decoding models use only a small amount of infor-
mation from the brain for image reconstruction. The interme-
diate representation may form an unnecessary bottleneck that
leads to significant information loss (Mayo et al., 2024).

Moreover, existing approaches mostly utilize early and ven-
tral pathway visual areas for reconstruction. While visual
responses and category selectivity are well-characterized in
those areas (Stigliani et al., 2015; Benson et al., 2018), sev-
eral studies suggest that conscious perception of visual loca-
tion and certain aspects of visual processing can occur out-
side of the visual cortex, specifically in higher-order brain re-
gions (Liu et al., 2019). A method that can process whole-
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Figure 1: Pipeline of NeuroAdapter

brain data and automatically learn the most relevant informa-
tion embedded in neural activity is needed.

Here, we tackle the problem by developing a lightweight,
end-to-end mapping framework that can transform whole-
brain activity into visual reconstructions without relying on in-
termediate pre-defined representations.

Approach
Our model, NeuroAdapter, built on the IP-Adapter framework
(Ye, Zhang, Liu, Han, & Yang, 2023), conditions a pre-trained
Stable Diffusion model (Rombach, Blattmann, Lorenz, Esser,
& Ommer, 2022) on sparse fMRI-derived features via a cross-
attention mechanism to reconstruct perceived visual stimuli.
An overview of our approach is presented in Fig. 1.

Neural Data Processing and Parcellation

We train our model using the surface-based fMRI data in fsav-
erage space from a single subject (subject 1) in the 7T-fMRI
NSD. The dataset includes high-resolution fMRI recordings
from participants viewing up to 10,000 natural images (Allen
et al., 2022). Subject 1’s data is split to training, validation,
and test sets. We average the vertex responses across image
repetitions to obtain a single response pattern per image. To
transform the high-dimensional fMRI data into structured in-
puts for conditioning the diffusion model, we apply the Schae-
fer parcellation (Schaefer et al., 2017), which clusters cortical
vertices into 500 parcels per hemisphere.

Parcel-wise Linear Mapping

We compute vertex-wise Signal-to-Noise Ratio (SNR) and se-
lect top 100 parcels per hemisphere with the highest aver-
age SNR (Fig. 2 shown on pycortex; Gao, Huth, Lescroart, &
Gallant, 2015), yielding a total of P = 200 parcels as fMRI
inputs to the model. Since the number of vertices varies



Method Low-Level High-Level

PixCorr ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ Eff ↓ SwAV ↓

ImageNet retrieval .128 .242 81.9% 90.3% 75.1% 80.6% .869 .522
Ozcelik & VanRullen, 2023 .254 .356 94.2% 96.2% 87.2% 91.5% .775 .423
NeuroAdapter (Ours) .130 .289 86.1% 93.5% 91.2% 92.4% .697 .394

Table 1: Performance across different metrics

Figure 2: Top-100-SNR Parcels for each brain hemisphere

across parcels, we pad each parcel’s vertex response vec-
tor to match the vertex count of the largest selected par-
cel, comprising Vmax vertices. This yields raw brain data
B ∈ RN×P×Vmax , where N is the batch size. We then apply a
linear projection from vertex space to the token space. Each
parcel is assigned a unique projection matrix Wp ∈ RVmax×D,
transforming padded vertex response into parcel embeddings
E ∈ RN×P×D, where D = 768.

fMRI-Guided Diffusion Process
To enable fMRI-guided image reconstruction, we modify the
IP-Adpater framework by replacing its image-based cross-
attention module with a mechanism that attends to the fMRI
token embeddings described above. The text input to the dif-
fusion model’s text encoder is set to an empty string, which
removes textual guidance. The fMRI token representations
are the only conditioning input during the reverse diffusion pro-
cess. To prevent overfitting and ensure robustness, we apply a
stochastic masking procedure to the fMRI token embeddings.
Given the tokens E, we randomly mask a subset of them for
each training sample. We sample a masking probability r ∼
U(0,1) and retain each of the P tokens independently with
probability r. This results in a binary mask M ∈ {0,1}N×P×1,
which is applied element-wise to the fMRI token embeddings
E ′ = E ⊙M. This masking strategy forces the model to per-
form image reconstruction using subsets of parcels and we
find it to be crucial for good performance. During training, only
the parcel-wise linear projection and cross-attention modules
are updated using mean squared error (MSE) loss, with the
Stable Diffusion model remaining frozen.

Brain Encoder
Extending the work of Adeli, Minni, and Kriegeskorte (2023),
we use a brain encoder to predict vertex-wise activity across
the whole brain from an input image. We apply this encoder in
two ways. First, we establish a baseline model by retrieving an
image from 1.3 million ImageNet images (Deng et al., 2009)
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Figure 3: Example reconstruction images

whose predicted neural activity from our encoder best corre-
lates with the ground truth fMRI response, a retrieval-based
decoding method inspired by Kay, Naselaris, Prenger, and
Gallant (2008). Second, we use the encoder to rank eight can-
didate images generated by our fMRI-guided diffusion model
(from eight different seeds) for a given test fMRI sample, se-
lecting the image whose predicted activity best correlates the
measured brain response.

Results
We evaluate our approach on eight image reconstruction met-
rics, comparing it against the ImageNet retrieval baseline and
the method proposed by Ozcelik and VanRullen (2023). As
shown in Table 1, NeuroAdapter consistently outperforms the
retrieval-based baseline across all metrics. Furthermore, our
method achieves better reconstruction performance on high-
level metrics than Ozcelik and VanRullen’s approach, while
achieving lower performance on the low-level metrics. This
pattern suggests that NeuroAdapter, despite its simplicity, is
particularly effective at capturing semantic content encoded
in the fMRI signals without an intermediate representation,
even if it is less accurate in reproducing low-level visual de-
tails, such as color, texture, and pixel-level structure. Future
work will explore augmenting the MSE loss to better capture
the low-level perceptual features in the representation.

Discussion
We present a simple yet effective brain-decoding framework
that directly conditions the diffusion denoising process on
brain activity. Our model encodes each parcel with a distinct
token embedding, an approach that can easily be extended to
using fMRI activity from the whole brain for decoding. Con-
ditioning directly on the neural data from different regions will
allow systematic exploration of the representational content in
each region.
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