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Abstract
Understanding how the brain constructs and updates vi-

. .. . 7
sual representations from dynamic input is central to our & E— =

comprehension of perception and cognition. While deep
learning has achieved impressive performance in visual
tasks, the extent to which these models capture the com-
putational principles of biological vision is unclear. In this
paper, we investigate the alignment between representa-
tions learned by vision Artificial Intelligence (Al) models
and neural activity in biological brains. Using brain fMRI
data, we benchmark a diverse range of models, trained on
various tasks, in their ability to predict brain responses
to image and video stimuli. Our results demonstrate
a clear advantage for video-based representations over
static image representations across all analyzed brain re-
gions. Our findings suggest that temporal modeling is a
key component in the development of models that better
align with biological vision, providing new insights into
computational modeling of vision.

Keywords: Artificial Intelligence; Vision: Video Represen-
tation; Neural Predictivity; Model-Brain Alignment;Intuitive
Physics Understanding.

Introduction

Understanding how the brain perceives and predicts the dy-
namic world remains a fundamental challenge across neuro-
science, psychology, and artificial intelligence. Humans are
able to effortlessly process continuous streams of informa-
tion, extracting not just static features (shapes and colors) but
also crucial dynamic information such as motion, object in-
teractions, and causal relationships. This ability to perceive
and anticipate events happening over time is fundamental to
our ability to navigate and interact with the world. While deep
learning has achieved impressive performance in vision tasks,
it is unclear to what extent these models capture the compu-
tational principles of biological dynamic vision.

Traditional computer vision models (Krizhevsky, Sutskever,
& Hinton, 2012; He, Zhang, Ren, & Sun, 2016), often trained
on static images, struggle to capture the richness and com-
plexity of dynamic scenes. They may be able to recognize
objects in a scene, but fail to predict its trajectory, or under-
stand the consequences of its interactions with another ob-
ject. This limitation highlights a crucial gap to human visual
perception, which seamlessly integrates spatial and temporal
information. Recent advances in video understanding mod-
els offer a promising avenue for exploring this challenge with
models that take advantage of video data (Carreira & Zisser-
man, 2017; Feichtenhofer, Fan, Malik, & He, 2019; Berta-
sius, Wang, & Torresani, 2021a). These models, incorporat-
ing mechanisms like 3D convolutions or self-attention, are de-
signed to learn representations that capture temporal depen-
dencies and spatio-temporal patterns. However, it remains
an open question whether these learned representations align
with the neural mechanisms underlying dynamic vision in bio-
logical brains.
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Figure 1: We illustrate our evaluation workflow for neural align-
ment comparison between models and primate observers.
We systematically evaluate a comprehensive set of video and
image models on multiple neural benchmarks to establish the
importance of temporal dynamics modeling in close to biolog-
ical visual processing.

This work attempts to bridge this gap by investigating the
representational alignment between state-of-the-art video Al
models and neural activity in the primate visual cortex. We in-
vestigate whether video models, trained to understand and/or
predict temporal dynamics, show neural representations more
similar to those in biological brains compared to static-image
models. To address this questions, we systematically bench-
mark a diverse range of video and image models, trained on
various tasks, against neural data recorded using fMRI. We
employ established neural predictivity metrics (Schrimpf et al.,
2020; Yamins et al., 2014) to quantify the similarity between
model activations and neural responses to both static images
and dynamic video stimuli.

This study makes several key contributions: (1) It provides
a comprehensive comparison of a diverse set of video and im-
age models in terms of their neural alignment with biological
visual processing. (2) It identifies specific brain regions that
exhibit the strongest alignment with video models, providing
insights into the neural substrates of dynamic scene under-
standing and their functional specialization.

Ultimately, this work aims to provide a deeper understand-
ing of how current video Al models represent and reason
about the dynamic visual world, highlighting the gap between
their capabilities and human-level understanding, and guiding
the development of more human-aligned Al systems.

Tasks and Datasets

This study systematically evaluates the neural alignment of a
comprehensive set of video and image models against a di-
verse suite of neuroimaging datasets. For each dataset, we
extract features from multiple layers of vision models corre-
sponding to the stimuli. We apply ridgeCV regression to map
model activations to neural activity, quantifying neural predic-
tivity using the correlation between predicted and actual neu-
ral responses. This analysis was performed separately for
each model and brain region. We report the maximum neural
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Figure 2: We illustrate the neural predictivity performance of different representation modalities on brain fMRI data captured on
dynamic and static stimuli. We find that video-based representations consistently outperform static image models across multiple
brain regions, highlighting the crucial role of temporal dynamics in predicting neural responses to visual stimuli.

alignment score across a given model’s layers.

The Natural Scenes Dataset (NSD) (Allen et al., 2022) is a
high-resolution fMRI dataset capturing brain responses from
humans viewing natural images. We analyze preprocessed
data from four subjects, focusing on 1,000 shared COCO
dataset images (Lin et al., 2014) with three trials per image.
The BOLD Moments in Time (BMD) dataset (Lahner et al.,
2024) provides whole-brain fMRI responses from ten human
subjects viewing 1,102 short (3-second) naturalistic video
clips. Sampled from the Memento10k dataset (Newman et
al., 2020)., these videos include rich metadata such as object
labels, scene descriptions, and memorability scores. We use
both training (1,000 stimuli) and testing (102 stimuli) sets.

Results and Discussion

Our investigation into the neural alignment of vision mod-
els reveals several key findings. We compare three distinct
model classes: dedicated video models (Morgado, Vascon-
celos, & Misra, 2020; Bertasius, Wang, & Torresani, 2021b;
Tong, Song, Wang, & Wang, 2022; Bardes et al., 2024; Fan
et al., 2021), static image models (He et al., 2021; Tewari et
al., 2023; Oquab et al., 2023; Dosovitskiy et al., 2020; Yu,
Ye, Tancik, & Kanazawa, 2021), and LSTM-augmented image
models.

We begin by examining the neural predictivity of different
model categories across various brain regions using the BMD
dataset. As shown in Figure 2, video models consistently
demonstrate the highest neural alignment across virtually all
recorded brain regions. For instance, in motion-sensitive area
MT, video models score between 0.696 (vjepa (Bardes et al.,
2024)) and 0.897 (i3d-nonlocal (Fan et al., 2021)), gener-
ally surpassing image models and significantly outperform-
ing most LSTM-augmented models. This pattern holds true
across Early Visual (V1-V2), Mid Visual (V3ab and V3v),
Object-selective (LOC, OFA and FFA), Motion & Spatial (MT,
EBA, STS, TOS, RSC and STS), and Parietal & Higher areas

(7AL, IPS123, PFt, PFop, BA2). While some high-performing
image models like dinov2 (Oquab et al., 2023) achieve scores
competitive with lower-performing video models in certain re-
gions, the average performance and the peak performance
within the video category consistently exceed those of the im-
age category.

We further validate our previous findings using NSD re-
sponses on static images. Our results align with expectations
regarding domain specificity, but also offer interesting insights.
Image models, particularly dinov2 (Oquab et al., 2023), tend
to achieve the highest peak scores across many regions (e.g.,
Mid Parietal and High Ventral). This confirms that models
trained on static images generally provide great alignment
for brain responses to static images. However, video models
demonstrate remarkably strong and competitive performance
on the NSD dataset. Their scores often surpass those of other
image models (including vit (Dosovitskiy et al., 2020), mae (He
et al., 2021), pixelnerf (Yu et al., 2021)) and consistently out-
perform the LSTM-augmented category by a significant mar-
gin (e.g. V1-4 and Mid Ventral/Lateral/Parietal).

On the other hand, the LSTM-augmented image models
consistently exhibit the lowest neural alignment scores on
both datasets across the visual hierarchy. This suggests
that merely adding a recurrent layer (LSTM) to a static fea-
ture extractor is insufficient to capture the neural represen-
tations necessary for complex dynamic stimuli, performing
worse even than models with no explicit temporal processing.

In summary, our experiments provide strong quantitative
support that explicit temporal modeling, as found in dedicated
video models, is crucial for aligning Al models with brain activ-
ity during dynamic visual experiences. These models signif-
icantly outperform static image architectures on video tasks.
While specialized image models are great at predicting re-
sponses to static images, the robust performance of video
models even in the static domain highlights their potential for
learning powerful, generalizable visual representations.
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