From Language to Cognition:
How LLMs Outgrow the Human Language Network
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Abstract

Large language models (LLMs) exhibit remarkable simi-
larity to neural activity in the human language network.
However, the key properties of language underlying this
alignment—and how brain-like representations emerge
and change across training—remain unclear. We here
benchmark 34 training checkpoints spanning 300B to-
kens across 8 different model sizes to analyze how brain
alignment relates to linguistic competence. Specifically,
we find that brain alignment tracks the development of
formal linguistic competence—i.e., knowledge of linguis-
tic rules—more closely than functional linguistic com-
petence. While functional competence, which involves
world knowledge and reasoning, continues to develop
throughout training, its relationship with brain alignment
is weaker, suggesting that the human language network
primarily encodes formal linguistic structure rather than
broader cognitive functions. Notably, we find that the cor-
relation between next-word prediction, behavioral align-
ment, and brain alignment fades once models surpass
human language proficiency. We further show that model
size is not a reliable predictor of brain alignment when
controlling for the number of features. Finally, using
the largest set of rigorous neural language benchmarks
to date, we show that language brain alignment bench-
marks remain unsaturated, highlighting opportunities for
improving future models. Taken together, our findings
suggest that the human language network is better mod-
eled by formal than functional aspects of language.

Keywords: Language; Human Language Network; LLMs;
Brain Alignment; Behavioral Alignment

Introduction

Deciphering the brain’s algorithms underlying our ability to
process language and communicate is a core goal in neu-
roscience. Human language processing is supported by the
brain’s language network (LN), a set of left-lateralized fronto-
temporal regions in the brain Binder et al.| (1997); |Bates et al.
(2003); |Gorno-Tempini et al.| (2004); Price| (2010); |Fedorenko
(2014); |[Hagoort| (2019) that respond robustly and selectively
to linguistic input (Fedorenko et al., |2024). Driven by recent
advances in machine learning, large language models (LLMs)
trained via next-word prediction on large corpora of text are
now a particularly promising model family to capture the in-
ternal processes of the LN. In particular, when these models
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Figure 1: Model Alignment with the Human Language
Network is Primarily Driven by Formal than Functional
Linguistic Competence. (a) Average brain alignment across
five Pythia models and five brain recording datasets, normal-
ized by cross-subject consistency, throughout training. (b) Av-
erage normalized accuracy of the same models on formal lin-
guistic competence benchmarks (two benchmarks). (c) Aver-
age normalized accuracy on functional linguistic competence
benchmarks (six benchmarks). The x-axis is logarithmically
spaced up to 16B tokens, capturing early training dynamics,
and then evenly spaced every 20B tokens from 20B to "300B
tokens. The vertical black line is at 16B tokens.

are exposed to the same linguistic stimuli (e.g., sentences or
narratives) as human participants during neuroimaging and
electrophysiology experiments, they account for a substantial
portion of neural response variance (Schrimpf et al.l 2021}
Caucheteux and King|, [2022; [Goldstein et al., |2022; [Tuckute
et al.| |2024; AIKhamissi et al., 2025).

Key Questions and Contributions

This work investigates four key questions, all aimed at distill-
ing why LLM aligns to brain responses. Specifically, we in-
vestigate how linguistic competence emerges across training
(developmental experience). We ask: (1) Is brain alignment
primarily linked to formal or functional linguistic competence
(Mahowald et al.l 2024)? (2) Do language models diverge
from humans as they surpass human-level prediction? (3) Do
current LLMs fully account for the explained variance in brain
alignment benchmarks? To answer these questions, we in-
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Figure 2: (1) Formal Competence Tracks Brain Alignment More Closely Than Functional Competence. Each column in
(1) compares how the evolution of formal competence (top) and functional competence (bottom) tracks the evolution of brain
alignment during training. The R? values quantify the strength of this relationship, with higher values in formal competence
suggesting it as the key driver of the observed brain alignment. (a): The data averaged across models of five different sizes. (b):
the same comparison as in (a), but with comparisons were made for PYTHIA 2.8B as an example. (2) NWP and Behavioral
Alignment Correlate With Brain Alignment Only in Early Training. (Top Row): Correlation between brain alignment and
language modeling loss shows a strong, significant relationship during early training (up to 2B tokens). While this correlation
weakens in later stages (up to "300B tokens). Results are shown for the average of all 8 models (last column) the the 2.8B
model . (Bottom Row): The same analysis, but for the correlation between brain alignment and behavioral alignment, revealing
a similar trend—strong correlation early in training, but no significant relationship as models surpass human proficiency.

troduce a rigorous brain-scoring framework to conduct a con-
trolled and large-scale analysis of LLM brain alignment.

Results

Brain Alignment Over Training Figure [[a) illustrates the
brain alignment of 5 Pythia models across 5 brain recording
datasets at 34 training checkpoints, spanning approximately
300B tokens. Each panel presents checkpoints that are log-
arithmically spaced up to the vertical line, emphasizing the
early-stage increase in brain alignment, which occurs within
the first 5.6% of training time. Beyond this point, the panels
display the remaining training period, where brain alignment
stabilizes. More specifically, we observe the following trend:
(1) Brain alignment is similar to the untrained model until ap-
proximately 128M tokens. (2) A sharp increase follows, peak-
ing around 8B tokens. (3) Brain alignment then saturates for
the remainder of training. Despite the vast difference in model
sizes, the trajectory of brain alignment is remarkably similar.

Alignment Tracks Formal Competence Following the ob-
servation that brain alignment plateaus early in training, we
next investigate how this relates to the emergence of formal
and functional linguistic competence in LLMs. Figure[2]1 dis-
plays the average brain alignment alongside the average per-
formance on formal competence benchmarks (top row) and
functional competence benchmarks (bottom row). This is
shown for the average of five Pythia models and the 2.8B

Pythia model across the training process. One possible expla-
nation for why brain alignment emerges before formal linguis-
tic competence is that existing LLM benchmarks assess per-
formance using discrete accuracy thresholds, rather than cap-
turing the gradual progression of competence through more
nuanced, continuous measures (Schaeffer et al., [2023).

LLMs Lose Behavioral Alignment Human language pro-
cessing is strongly modulated by prediction: unexpected
words lead to longer reading times (Smith and Levy, 2013}
Brothers and Kuperberg, 2021} |Shain et al., [2024). Early in
training, LLMs align with this pattern, but as they surpass hu-
man proficiency (Shlegeris et al., 2022), their perplexity drops
and they begin encoding statistical regularities that diverge
from human intuition (Oh and Schuler, [2023; [Steuer et al.,
2023). This shift correlates with a decline in behavioral align-
ment, suggesting that superhuman models rely on different
mechanisms than those underlying human language compre-
hension. Figure [22 shows that brain alignment initially cor-
relates with perplexity and behavioral alignment, but only dur-
ing the early stages of training (up to "2B tokens). Beyond
this point, these correlations diminish. In larger models, we
observe a negative correlation between brain alignment and
behavioral alignment in the later stages of training. This trend
reinforces that early training aligns LLMs with human-like pro-
cessing as also observed in earlier stages, while in later
stages their language mechanisms diverge from humans.
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