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Abstract 

Integration of information arriving in the brain 

from different sensory modalities is essential for 

robust perception. In this work, we use the 

predictive coding framework - a prominent theory 

of cortical processing- to perform multisensory 

representation learning. Our model can learn 

meaningful joint representations from two 

separate streams of data. These representations 

function as a form of hetero-associative memory, 

allowing the network to recall or reconstruct one 

modality from the other. The reconstructed 

outputs preserve class-relevant features, even in 

the absence of one sensory modality. These 

results suggest that predictive coding networks 

can serve as a biologically plausible framework 

for modeling multisensory representation 

learning. 
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Introduction 

Multisensory integration (MSI) refers to the brain’s ability 

to combine information from multiple sensory modalities. 

MSI plays a critical role in perception by allowing us to 

form meaningful representations of the sensorily rich 

environment around us. This integration is essential for 

effective action planning and for resolving perceptual 

ambiguities and uncertainties (Ernst & Bülthoff, 2004). 

Despite its importance, the underlying neural 

mechanisms of MSI remain largely unknown.  

Predictive coding, an increasingly influential 

theory of cortical processing, has been proposed as a 

unifying framework for perception, action, and cognition 

(Friston, 2005; Pennartz et al., 2019; Rao & Ballard, 

1999). According to this framework, the brain 

continuously generates predictions about incoming 

sensory stimuli, compares these predictions with actual 

inputs, and uses the resulting prediction errors to learn 

better predictions. (Rao & Ballard, 1999) applied these 

principles to build a hierarchical three-layer predictive 

coding network that mimicked neuronal responses in the 

visual cortex. Various extensions to predictive coding 

models have been proposed thereafter (Spratling, 2017), 

but most focus on a single modality. Notable exceptions 

include (Pearson et al., 2021) which explored visuo-tactile 

integration for place recognition in robots. Despite the 

essential role that MSI plays in perception, predictive 

coding models that address multisensory inference and 

cross modal predictions remain scarce.  

In this work, we extend the classical predictive 

coding network of Rao and Ballard to perform 

multisensory inference. We demonstrate that such a 

network is capable of learning multisensory 

representations of data and using these representations 

to perform cross-modal recall. 

Model and training procedure 

Figure 1 presents a schematic of our model, which 

consists of three modules. Two unisensory streams 

represent two distinct, arbitrary sensory modalities 

(both visual in these experiments for simplicity). Each 

stream follows the Rao and Ballard architecture, with 

each layer in the network consisting of two groups of 

neurons: representation neurons that predict the 

activity of the layer below and error neurons that 

project the mismatch between the prediction and the 

actual representation to the layer above. 

 

Figure 1: Model schematic. R and E denote populations of 
representation and error neurons, respectively. Solid lines 

indicate predictions; dotted lines indicate errors. 



At the highest level, the two unisensory streams 

converge into a multisensory module. This module 

jointly predicts the activity of the topmost layers of 

both unisensory pathways and receives prediction 

errors from both modalities. 

We train the network on paired inputs from the MNIST 

and Fashion-MNIST datasets. Modality 1 receives 

digit images from MNIST, while modality 2 is exposed 

to fashion item images from Fashion-MNIST. The 

datasets are paired by class—for example, digit "1" in 

modality 1 is always paired with the fashion item 

"pants" in modality 2, though the specific samples 

vary across instances. 

Results 

Our findings demonstrate that the proposed 

multisensory network is capable of learning 

meaningful multimodal representations. Figure 2, 

Panel A shows reconstructed images of the test data, 

obtained by decoding the representations inferred at 

the joint multisensory layer through the feedback 

pathway of the network. These reconstructions—

generated via top-down predictions—preserve class-

relevant features, as evidenced by Figure 1, Panel B, 

where a logistic regression model—trained on the 

original MNIST and Fashion-MNIST datasets—

successfully classifies the generated images. 

 

Cross-Modal Recall.  A key advantage of 

multisensory processing is robustness in the face of 

partial sensory input—such as when one modality is 

missing or noisier than the other. Our model 

demonstrates this capability by reconstructing 

samples from the missing modality using only the 

available input from the other modality. Figure 2, 

Panels C and D illustrate reconstructed images when 

one modality -fashion items and digits respectively- is 

absent. Figure 2, Panel B shows that these 

reconstructions are classifiable by a logistic 

regression model trained on the original dataset, 

confirming that essential features are preserved even 

in the absence of one modality. 

Conclusions 

We have shown that a multisensory network based 

on predictive coding can learn robust multisensory 

representations and perform cross-modal recall. Our 

findings provide insights into the computational 

mechanisms underlying multisensory perception and 

highlight the potential of predictive coding-based 

models in cognitive and artificial intelligence 

applications. 

Figure 2: Panel A shows pairs of reconstructed images from the test dataset. Panel B shows the classification accuracy of 
generated images. Panels C and D show cross-modal reconstructions of a missing input using the available modality.  
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