From Sound to Source: Human and Model Recognition in Auditory Scenes
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Abstract

Our ability to recognize sound sources in the world is
critical to daily life, but it is not well documented or un-
derstood in computational terms. We developed large-
scale behavioral benchmarks of human environmental
sound recognition, built signal-computable models of
sound recognition, and used the benchmarks to compare
models to humans. The behavioral tests measured how
sound recognition abilities varied with the source cate-
gory, audio distortions of different types, and concurrent
sound sources, all of which influenced recognition per-
formance in humans. Artificial neural network models
trained to classify sounds in multi-source scenes reached
near-human accuracy and qualitatively matched human
patterns of performance in many (but not all) conditions.
By contrast, traditional models of the cochlea and audi-
tory cortex produced worse matches to human perfor-
mance. The results suggest that many aspects of hu-
man sound recognition emerge in systems optimized for
the problem of real-world recognition. The benchmark re-
sults clarify the factors that constrain human recognition,
setting the stage for future explorations of auditory scene
perception involving salience, attention, and memory.
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Introduction

Environmental sound recognition refers to the process of iden-
tifying everyday sounds such as footsteps, rainfall, and animal
calls. Such recognition abilities help us build a representation
of the surrounding environment, but remain poorly understood
in comparison to other aspects of audition. Recent progress
in machine hearing has resulted in working models of en-
vironmental sound recognition (Hershey et al., 2017; Gong,
Lai, Chung, & Glass, 2022), but it remains unclear whether
such models can account for human abilities. We sought to
build candidate models of human recognition by optimizing
machine systems for source recognition and then compared
them to human abilities measured with a large suite of exper-
iments, an approach that has been fruitful for other aspects
of audition (Saddler, Gonzalez, & McDermott, 2021; Francl &
McDermott, 2022; Saddler & McDermott, 2024).

Methods
Training Datasets

Models were trained on auditory scenes generated from
recorded natural sounds from the GISE-51 dataset (12,465
training sounds grouped into 51 source categories) (Yadav &
Foster, 2021). Scenes ranged from 1 to 5 sources, drawn
equiprobably from the 51 source categories. Each scene was
2 seconds long with each source a maximum of 1 second. We
generated 1,500,000 training scenes and 100,000 validation
scenes.

Model Architectures

All models had an initial ‘cochleagram’ stage, obtained from
a filterbank intended to replicate the auditory periphery
(McDermott & Simoncelli, 2011), and culminated in a linear
classifier (a fully connected layer followed by 51 independent
sigmoid units corresponding to the 51 output classes).

Cochleagram Model This model consisted of just the clas-
sifier operating on the cochleagram.

Spectrotemporal (ST) Model This model augmented the
cochleagram with a bank of spectro-temporal filters developed
by Chi, Ru, and Shamma (2005), intended to replicate primary
auditory cortical processing. The classifier operated on the
output of these filters.

Convolutional Neural Network (CNN) Model This model
consisted of the cochleagram followed by a deep convolutional
neural network architecture adapted from a model in Saddler
and McDermott (2024). The network consisted of 6 blocks
each containing layer normalization, convolution, ReLU non-
linearity, and pooling. This was then followed by a layer of
dropout regularization, and then the classifier layer.

Behavioral Benchmarks

Participants completed two experiments. In the first they
heard scenes of 1-5 sources, and judged whether a prompted
sound category (e. g. "applause”) was present in the scene.
In the second, they heard recordings of single sound sources,
to which various distortions had been applied (Table 1). Fig-
ure 2 shows examples of a few distortions applied to a few
example sounds.
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Figure 1: a. Performance for different sound categories. Each point corresponds to 1 of the 51 sound labels. Left panel plots
human split-half reliability. Other panels plot each model vs. human. b. Performance for different distortions. Each point
corresponds to a distortion condition, with the distortion type indicated by color. c. Performance vs. scene size for humans (red)
and CNN (green), ST (dark blue), and cochleagram (light blue) models.

Table 1: Sound Distortion Conditions Original Noise Time Bandpass
Distortion Type Conditions Vocoded Dilated Filtered

Local Time Reversal 10, 20, 30, 40, 50, 100 ms

Time Dilation 0.5,0.75,0.875,1.125,1.25,1.5,2 Organ ----
Reverberation (DRR) 20, 50,80 dB

Reverberation (RT60) 200, 400, 800, 1600 ms

Peak Clipping 0, 0.25,0.5,0.75, 0.9, 0.98 Laughter ----
Noise Vocoding 1,2, 4, 8, 16, 32 channels

Bandpass Filter (bandwidth) 5, 10, 20, 30, 40 semitones

Bandpass Filter (cent. freq.) 225,450,900,1800,3600,7200 Hz Chirps ---.
Highpass Filter (cutoff) 400, 800, 1600, 3200, 6400 Hz

Lowpass Filter (cutoff) 400, 800, 1600, 3200, 6400 Hz

Spect. Mod. Lowpass Filt. 0.5, 1, 2, 4, 8 cycles/kHz
Temp. Mod. Lowpass Filt. 3,6,12,24 Hz

Figure 2: Spectrograms illustrating the impact of sound distor-
tions (noise vocoding, time dilation, and bandpass filtering) on
example sounds.

Table 2: Human-Model Correlation Sound Distortions Humans showed reliable variation in

Split-Half ~ Cochleagram ST CNN performance across distortion types. The CNN again most

Reliability Model Model Model closely matched human performance (Table 2). All models
Labels 0.882 0.395 0.632 0.684 under-performed on the audio filtering conditions (Figure 1b).
Distortions  0.899 0.595 0.787 0.791

Multi-source Scenes When analyzed as a function of
scene size, recognition performance decreased as the num-
ber of sources increased, but remained well above chance
Results (Figure 1c). The CNN model quantitatively matched human

o . performance.
Sound Labels We quantified performance for particular

sound classes as d’, averaged across all scene sizes. Some
source types were more recognizable to humans than others.
All models captured some of the variation in performance, but We developed a large-scale benchmark of human environ-
the CNN most closely matched humans (Figure 1a). mental sound recognition and compared humans to models

Conclusion



optimized for natural sound source recognition in auditory
scenes. A CNN model trained on environmental sound recog-
nition replicated the human dependence on scene size and
much of the variation with source and distortion type. Sim-
pler models based on standard cochlear or cortical processing
stages alone did not replicate human behavior as well. How-
ever, even the CNN model underperformed humans in some
conditions and did not explain all the reliable variance in hu-
man response patterns, perhaps because the training dataset
was relatively small by modern standards. The results set the
stage for future explorations of auditory scene perception in-
volving salience, attention, and memory.
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