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Abstract
Humans frequently make decisions in complex, high-
dimensional environments, where identifying task-
relevant information is critical for rapid behavior
optimization. Humans outperform standard reinforce-
ment learning agents in navigating such complexity, yet
the cognitive strategies of humans remain unclear. To
address this, we developed a novel multi-dimensional
learning task in which only a subset of dimensions is
reward-related. Crucially, unlike prior studies, subjects
are uninformed of the true task dimensionality and
have to identify them through exploration. This design
closely mimics the ambiguity in real-world tasks. Our
results have identified two stereotyped choice patterns
that reveal “dimension-guided” strategies in exploration
and exploitation. Cross-subject analyses suggest that
dimension-guided exploration may promote the effi-
ciency of reward-based learning. These findings indicate
that humans leverage task dimensionality to guide explo-
ration, and provide inspiration for improving exploration
efficiency in AI agents.
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Introduction
Humans constantly make decisions in complex environments
where the outcome (or value) of one’s action could potentially
depend on a large array of environmental factors (i.e. dimen-
sions). While the true action values may only depend on a
few factors (i.e. the true dimensionality of the task is low),
that information is not a priori known and has to be learned
through exploratory interaction with the environment. Despite
the demonstrated efficiency, how humans effectively explore
and rapidly learn in high-dimensional task environments re-
mains an open question.

In contextual bandit problems, previous studies have found
that humans learn the mapping between contextual cues and
action values in a way akin to Gaussian process regression
(Krause & Ong, 2011; Schulz et al., 2018; Wu et al., 2018).
In these studies, however, the dimensionality of the contextual
space was often low (≤2) and the number of reward-relevant
dimensions explicitly conveyed to the subjects, reducing the
need for active exploration and inference on task dimension-
ality (Lucas et al., 2015; Parpart et al., 2017).

Other studies examined value learning in multidimensional
environments (Ballard et al., 2018; Mack et al., 2016; Niv et
al., 2015; Wilson & Niv, 2012; Goodman et al., 2008; Wun-
derlich et al., 2011). They found that mechanisms such as
Bayesian rule learning (Ballard et al., 2018), selective atten-
tion (Marković et al., 2015; Wilson & Niv, 2012) and serial
hypothesis testing (Niv et al., 2015; Leong et al., 2017) could
explain human choice behavior. However, since the subjects
were pre-informed of the number of reward relevant dimen-
sions (which was 1), it remained unclear how humans may
explore in environments with unknown dimensionality and how

they learn to identify the reward-relevant dimensions (Akaishi
et al., 2016; Farashahi et al., 2017; Wang & Rehder, 2017).

Here we designed a novel behavior paradigm, where sub-
jects explored a latent multi-dimensional environment and
were told to arrange multiple options based on their estimated
value. We found that subjects exhibited exploratory and ex-
ploitative choice patterns that organized around the true task
dimensions. We further found that such dimension-guided ex-
ploration strategy correlate well with high task performance
and rapid learning.

Figure 1: Task paradigm. A) Process of one game
round. B) The entire experiment process. C) The score-
relevant/irrelevant dimension settings for each participant (us-
ing 4D game as an example).

Method
Participants: 77 cognitively healthy adults (mean age = 26.6,
ranging between 19-51 years; 70.1% females) were randomly
assigned to two groups: the One-Game Group (n = 39) and
the Two-Game Group (n = 38).
Procedures: As shown in Figure 1B, participants completed
a practice session to learn basic game mechanics. The Two-
Game Group subsequently completed a 30-round 3D (with
this game dimension corresponding to food category) game
followed by a 50-round 4D game. The One-Game Group di-
rectly engaged in the 4D game. After each game, participants
completed a questionnaire assessing game engagement and
learning outcomes. Finally, an oral interview gathered qual-
itative insights into their strategies and decision-making pro-
cesses.
Task: In each game, participants were instructed to infer a
customer’s food preferences. They arranged 9 non-identical
stimuli into three rows with instructed decreasing weights
(top>middle>bottom, Figure 1A) in each round. A score
feedback was given after each round’s choice. The goal of
the game was to obtain the maximum possible score in fi-
nite rounds. In each game session, two independent reward-
relevant dimensions were randomly selected, within which
each food item was assigned fixed values (Figure 1C). Partic-
ipants were not informed of the number, identities of reward-
relevant dimensions or the reward policy beforehand. The
game ended automatically upon achieving the maximum pos-
sible score and proceeded to the Q&A phase.



Result

Humans exhibit two stereotyped and persistent
choice patterns

Figure 2: A) Illustration for 3-3-3 and 3-2-2 choice patterns
and probability of occurrence. B) Probability of adopting each
choice pattern for different groups on time course. C) Persis-
tence and diversity of each choice pattern. D) Examples of
three subjects’ choice sequences in games.

Humans exhibit two stereotyped choice patterns during the
game, both occurring at frequencies significantly higher than
chance. One pattern, referred to as the “333” choice pattern,
involves placing one food three times in each row within a sin-
gle dimension (Figure 2A). Another pattern, termed “322”,
consists of placing one food three times in the first row and
two other foods within the same dimension twice each in sec-
ond and third rows, respectively (Figure 2A). Participants ap-
plied these patterns across different dimensions and often
switch between dimensions in a sequential manner (Figure
2D). Early in the game, the 333 pattern was used more fre-
quently, whereas the 322 pattern became more prevalent in
later stages (Figure 2B). Both patterns persisted significantly
above chance throughout of the game. The 333 pattern exhib-
ited a high degree of diversity, while the 322 pattern showed a
certain degree of repetition (Figure 2C).

Persistent choice patterns reflect exploration and
exploitation along task dimensions

We quantified the preference level of each food in a choice
pattern (total of 9 foods in 3D games and 12 in 4D games). To
estimate the optimal choice vector for the current round, we
computed the correlation between participants’ past choices
and their corresponding score feedback. The Exploration In-
dex (EI) was then defined as the distance between the actual
current choice vector and the predicted optimal vector (Figure
3A). Figure 3B illustrates one participant’s choice patterns
across four dimensions, along with the corresponding EI val-
ues. Notably, the EI was higher when the participant adopted
the 333 choice pattern and lower when the 322 pattern was
used. A significant difference in the EI distributions between
the two patterns suggests that the 333 pattern is more strongly
associated with exploration, whereas the 322 pattern is less
associated with exploration (Figure 3C).

Figure 3: A) Illustration of Exploration Index metric. B/C) Ex-
ploration Index for 333 and 322 choice pattern (case analy-
sis/statistic result). D) Efficiency of dimension-guided explo-
ration. E) Game performance for naı̈ve and experienced 4D
group.

Dimension-guided exploration promotes efficient
learning and transfer of strategies
Participants who employed the 333 strategy to explore a
greater number of dimensions completed the game more ef-
ficiently — in fewer rounds and with higher scores (Figure
3D). Those who had previously played the 3D game began
using the 333 strategy earlier in the 4D game, indicating a
transfer of strategy (Figure 2B). A comparison between the
experienced and naı̈ve groups in the 4D game revealed that
this strategy transfer facilitated more effective learning, as re-
flected in higher fraction of full-score participants and fewer
rounds required to complete the game (Figure 3E).

Conclusion
Our results suggest that humans develop a dimension-guided
exploration strategy in complex task settings, which is both
efficient and transferable. We also observed that this strategy
is associated with human category concepts—an aspect that
is beyond the scope of the current report. Moving forward, we
aim to further investigate how this strategy emerges and to
model the underlying cognitive processes involved.
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