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Abstract 
Humans  can recognize many object categories: 
what are the underlying computational routes from 
retina to category-level representations that enable 
this capacity? Deep neural networks are now 
remarkably competent at visual categorization, and 
as such can serve as a powerful model system for 
dissecting the hierarchical processing of visual 
inputs. In this work, we investigate the computations 
underlying individual category recognition in CNNs: 
are all unit-to-unit connections across the layers 
required to categorize an object, or might more 
dissociable sparse, modular circuits learned in the 
network support this task?  Extending work on CNN 
circuit extraction (Hamblin, Konkle, & Alvarez, 2023), 
we have developed a procedure for identifying 
functional subcircuits within Alexnet that are 
important for category discrimination. Our algorithm 
assigns scores to connections based on their 
estimated contribution to a category unit's activation 
pattern and prunes the lowest-scored connections 
up to a chosen circuit substitution accuracy 
threshold on an extraction imageset. We then 
evaluate the resulting circuits for function 
preservation on new images, and analyze the 
structure of the resulting category circuits. When 
pruning to an allowed small circuit substitution 
accuracy decrement, we find surprisingly sparse, 
substantially faithful circuits with an average circuit 
sparsity of 45.3% and an average circuit substitution 
accuracy of 90.9% that of the unpruned network. 
These results indicate that category-level 
representations individually depend upon relatively 
sparse subnetworks, suggesting a semi-modular 
neural code with significant, structured sharing of 
circuitry. 

Introduction 
Visual input to the retina and early visual system is 
transformed across hierarchical processing stages 
into category-selective representations in the higher 
visual system. A spectrum of theoretical frameworks 
have been developed for understanding this 
process, from distributed coding and untangling in 
large-scale population codes (Haxby, Gobbini, 

Furey, Ishai, Schouten, & Pietrini, 2001; DiCarlo & 
Cox 2007), to more category specialization 
processed in specialized circuits (Kanwisher 2010; 
Grill-Spector & Weiner, 2014). For example, a fully 
distributed code implies that every neuron and 
synapse in the population contributes in some way 
to the computation of a categorical representation, 
forming dense computational circuits. On the other 
extreme, strong  specialization accounts posit that 
some parts of the population are relevant to one and 
only one kind of category. Recently, an intermediate 
“routing” framework has been proposed that strikes 
a balance between these accounts: partial 
separability exists in the population code, where 
some parts of the population are more relevant for 
some categories relative to others, with increasingly 
separable circuit computations over successive 
hierarchical transformations (Prince, Alvarez, & 
Konkle, 2024).  

Unfortunately, in human brains and larger 
biological systems, the full visual circuit architecture 
is not known, as methods do not yet exist for 
mapping hierarchical circuits across all neurons 
within and across areas. Fortunately, modern 
CNNs–whose internal connectome is fully 
accessible–are very competent at completing visual 
categorization tasks, allowing us to at least examine 
how one model system accomplishes 
image-to-category level representation through  
circuit computations. Further, as many of these 
models show emergent representational similarity to 
the human visual system (Schrimpf, Kubilius, Hong, 
Majaj, Rajalingham, Issa, & DiCarlo, 2018; Conwell, 
Prince, Kay, Alvarez, & Konkle, 2024), 
understanding the “functional neuroanatomy” of a 
deepnet offers promise that the principles of circuit 
computation may lead to insights and predictions 
about visual representation routing in biological 
systems.   

Method 
Here, we developed a method to dissect out 
subcircuits of Alexnet that preserve the function of 
each of the 1000 output category units, extending 
work from Hamblin, Konkle, & Alvarez, 2023.  
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For each category, we compute an importance score 
for all of the model weights as follows: For each 
image in a selected scoring set (chosen from the 
imagenet training set), the activations of each weight 
are multiplied by the gradient of the target unit’s 
activation with respect to the weights’ activations, 
yielding a linear estimate of the weight’s contribution 
to the target unit’s activation. This is averaged over 
images to give an estimated importance score per 
weight. For fully connected layers, these scores are 
then minmax normalized to be between 0 and 1. 
Empirically, 4 images per category was the minimum 
quantity needed for stable weight score rank order. 
 
Circuit extraction 
Next, for each output unit, the model weights are 
pruned to 0 from lowest to highest scored, to arrive 
at a category-specific circuit of a select sparsity. To 
determine how much we can prune while “preserving 
the function” of the unit, we prune only until circuit 
substitution accuracy (CSA) falls below a threshold. 

The idea is relatively intuitive: any target 
output unit has a certain prediction accuracy over 
images when using the full model architecture; if we 
substitute in activations for the target unit from the 
pruned circuit instead, then a good circuit should still 
classify the image correctly. Using an extraction set 
of 20 images from each category taken from the 
imagenet evaluation set, we thus compute the CSA 
measure as the fraction of times that the network 
predicted the target category and it was the correct 
prediction. We then correct this measure for false 
alarms by subtracting the fraction of times that the 
target category was predicted when it wasn’t 
present. 

One challenge is that the pruned circuit may 
have a global shift in activation levels; thus we train 
one free parameter to set the overall bias of the 
pruned circuit output unit.   Our final circuit extraction 
procedure is as follows: for each target output unit 
we sweep over increasing circuit sparsities, 
optimizing the target unit bias to maximize the CSA. 
This is first done on the fully-connected layers until 
CSA falls below a chosen threshold, and is then 
repeated for the convolutional layers, resulting in a 
single extracted circuit per output unit. 

Results and Discussion 
Across categories, this method yields sparse circuits 
that maintain the target unit function across 30 new 
images from each category from the imagenet 
evaluation set. We find that we can extract circuits 
with an average SA of 47.5%, 90.9% that of the 
unpruned network’s average accuracy of 52.3%, and 
with an average sparsity of 45.3% (and a standard 
deviation of 16.20%) (fig. 1a). 

 
Figure 1: a). Pruned circuit CSA vs. original network 

accuracy for all output category circuits 
 b.) Histogram of Jaccard similarity values for all 

pairs of circuits in the network. 
 Given the circuits produced by our extraction 
procedure, what structure and dissociations are 
present in these circuits? As a first analysis, we 
consider the amount of circuit overlap between any 
two categories. We quantified this with the 
intersection over the union of the circuit masks 
(Jaccard similarity).  A histogram of all such overlaps 
is shown in fig. 1b, where some categories 
demonstrate highly dissociable circuits, while most 
show highly similar computation paths.   

These results set the stage for making 
predictions about which visual categories might 
interfere more or be processed in parallel (Cohen, 
Konkle, Rhee, Nakayama, & Alvarez, 2014), and 
generally understanding the computational 
emergence of category level visual representations.   
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