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Abstract
While the characterization of individual human brain or-
ganization with functional magnetic resonance imaging
(fMRI) has in the past relied heavily on resting-state data,
it has been shown that a more powerful identification of
functional brain organization can be achieved with bat-
teries including a broad set of tasks. Following practi-
cal considerations, these multi-task datasets are often de-
signed such that each imaging run includes only a small
number of similar tasks or conditions, such that most
task-task contrasts have to be made across fMRI runs.
Here we show that a design in which all tasks are mea-
sured repeatedly within the same imaging run is statis-
tically superior both for estimating tasks-rest contrasts,
as well as any task-to-task contrast. An interspersed
multi-task design leads to more predictive brain parcel-
lations and connectivity models, even though the design
requires participants to constantly switch between tasks.
We present a flexible Python toolbox that implements 20+
common tasks with this design, and that automatizes
the generation of multi-task batteries for fMRI experimen-
tation. Furthermore, we provide a framework for shar-
ing and integrating pre-processed data across a growing
number of multi-task datasets.
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Introduction
Functional precision mapping aims to characterize the individ-
ual spatial layout and co-activation patterns of different func-
tional regions of the human brain across a large number of
task states. While such characterization can be achieved
with resting-state data (Tavor et al., 2016), individual brain or-
ganization measured with a broad battery of tasks scanned
for the same amount of time better generalizes to new tasks
(Nettekoven, CCN, 2025). Such multi-task batteries have
been shown to be useful in enabling an interpretable and sta-
ble mapping of different brain structures (King, Hernandez-
Castillo, Poldrack, Ivry, & Diedrichsen, 2019).

Datasets that study individual subjects across many differ-
ent tasks (deep-phenotyping datasets) usually follow one of
two different designs. In the blocked design, adopted for ex-
ample in the task-fMRI dataset of the Human Connectome
project (Barch et al., 2013) or the Individual Brain Charting
project (Pinho et al., 2018), each imaging run includes only a
subset of tasks or conditions and the rest baseline, with differ-
ent imaging sessions dedicated to different types of tasks. In

the interspersed design, used for example in the Multi-domain
task battery dataset (King et al., 2019), each run contains a
short period of each task, with every imaging run repeating
the same tasks in a different order.

In this paper we compare these two designs. We care-
fully characterize the variance and covariance of measure-
ment noise from a range of empirical multi-task studies, and
then use optimal design calculations (Dale, 1999) to compare
a wide range of different designs. We show the advantages
of interspersed design for measuring both task-task and task-
baseline contrasts.

We present an open-source Python toolbox that enables
the effortless design and implementation of Multi-task batter-
ies for fMRI studies. We also present an analysis and data-
sharing framework to enable the integration of many multi-task
datasets, which will accelerate the development of more com-
plex models of organization of the human brain.

Methods and Results
Sources of measurement noise
To determine the optimal fMRI design for a Multi-task battery,
we need to consider two different sources of measurement
noise that impact the estimation of task-related activity: First,
there is variability due to the measurement of the task itself
(σ2

ε ), which for randomized designs is approximately indepen-
dent across different tasks / conditions within a run. Secondly,
measurement noise also affects the common baseline within
each run. This noise source (σ2

b) induces positive covariance
between activity estimates of different tasks / conditions of the
same run. Both noise sources can for example be clearly
seen in the covariance matrices for the activity estimates of
2 runs of the Human Connectome task dataset (Fig. 1a).
The condition-wise variance and covariance within a run is
substantially higher than the covariance between runs. The
between-run covariance allows us to estimate the signal vari-
ance (σ2

s ) and covariance (γs), such that we can quantify the
importance of the two different noise sources across datasets.
The noise of the baseline measurement accounted for be-
tween 22.1% (Working Memory) and 86.7% (Language) of
the total measurement noise, with the other sessions of the
HCP dataset falling between these two values.

Interspersed vs. Blocked design
To understand which experimental design is most efficient, we
conducted a theoretical analysis with 2 imaging runs and 4
tasks. In the blocked design (Fig. 1b), two tasks were scanned
in run 1, and the other two tasks in run 2. In the interspersed
design, both runs included all the tasks. The total length of
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Figure 1: Experimental Design of Multi-task batteries. (a) Co-
variance of cortical activity patterns across two imaging runs
for two sessions of the HCP task dataset. The comparison of
within-run and between-run covariances allows us to estimate
the two noise sources σ2

b and σ2
ε . (b) In a blocked design,

only some task-task contrast can be made within-run (dashed
line), while most contrasts have to be made between runs
(dotted line). In a interspersed design, all contrasts can be
made within run. (c) Predicted standard deviation of task-rest,
and task-task contrasts for blocked (blue) and interspersed
(orange) designs as a function of the proportion of each imag-
ing run dedicated to rest.

each run was kept constant across the two designs. We also
varied the proportion of each run that was spent on measuring
the resting baseline. In these designs, the noise on the com-
mon baseline accounted for 17.6% (0.7 baseline) and 81.8%
(0.1 baseline), showing that the simulations covered a realistic
range of scenarios.

Because the same amount of time is spent on each task in
the two designs (either within a single run or across two runs),
the within-run task-task contrasts (Fig. 1c, dashed line) are
measured with the same variability in both designs. As rest-
ing baseline is not important here, the lowest variability would
be achieved in a design that does not include rest at all. In
contrast, the between-run task-task contrasts in the blocked
design (dotted line) rely on the common baseline measure-
ment across the two runs. As it is impacted by the measure-
ment noise on the baseline for both run 1 and 2, its variance
is more than twice as high as compared to the within-run con-
trast. Maybe surprisingly, the interspersed design also re-
sults in less variable estimates for the (within-run) contrasts
between task and rest (solid line). This is due to the fact
that in the blocked design, the contrast can only be calculated
against the resting baseline of one run, while the interspersed
design can leverage the resting baseline in both runs.

Furthermore, we show that the advantage of the inter-

spersed design remains for larger number of tasks, and when
we take into account the time lost by switching between tasks
within runs. Consistent with earlier papers (Friston, Zarahn,
Josephs, Henson, & Dale, 1999), we show that 30s-40s per
task within each run provides a good balance between the
low-pass properties of the hemodynamic response function
and the increased physiological noise at very low frequencies.
With this timing and a run length of 12 min, we can measure
task batteries with up to 20 different tasks. Such design can
be shown to lead to a powerful characterization of the task-
evoked activities in individual brains (King et al., 2019).

A Python toolbox for running Multi-task batteries

We are presenting an open-source python toolbox for the de-
sign of Multi-task batteries. Built upon PsychoPy (Peirce et
al., 2019), the toolbox implements stimulus presentation, re-
sponse collection, recording of behavioral and eye-tracking
data, scanner synchronization, and instructions. With 20+
tasks currently implemented, the toolbox allows for the flexible
and fast assembly of new batteries. With an object-oriented
design, the toolbox can be easily extended with new tasks
and response devices.

Functional Fusion: A call for open source initiatives
for integrating different multi-task datasets

The multi-task battery approach is especially powerful when
multiple datasets spanning various functional domains can be
integrated. To ease such analysis, we established a data man-
agement framework that utilizes current BIDS-derivative stan-
dards. Currently, we have 10 multi-task datasets, including
the Multi-domain task battery (King et al., 2019), the individ-
ual brain charting project (Pinho et al., 2018), the Human Con-
nectome task dataset (Barch et al., 2013), and the 103 task
dataset (Nakai & Nishimoto, 2020), processed in the frame-
work. The python package enables the quick extraction of
functional contrasts and time series in any desired group atlas
space . It also provides statistical tools for reliability analysis,
and the alignment of different task batteries into a common li-
brary. The latter process is especially powerful when different
task-batteries contain a number of shared ”anchor” tasks, a
feature enabled by the standardized task framework.

Summary

The study of individual human brains is greatly aided by the
application of broad battery of tasks, which provide a robust,
generalizable, and interpretable characterization of functional
brain organization. To accelerate the development of more
sophisticated models of individual brain organization, we are
inviting other research groups to contribute their own multi-
task dataset to the growing collection. Each participating lab-
oratory will have free access to pre-processed datasets that
can be analyzed using a unified analysis framework, while re-
taining control of the rules for sharing their own datasets.
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