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Abstract
Group-level atlases are commonly used in neuroimaging
to define regions-of-interest (ROIs) - however, they ignore
the substantial inter-individual variability in brain organi-
zation. While resting state data can be used to derive
individual functional maps, recent work has shown that
maps obtained with a broad task battery generalize better
to new mental states. With limited scanning time an im-
portant question becomes which tasks to choose for an
optimal task battery. Here we propose to base this selec-
tion on the empirical activity maps themselves, and eval-
uate two selection strategies: One that seeks to maximize
the imaging contrast in the region of interest (activation
strength) and one that seeks to maximize the indepen-
dence of different subregions (representational spread).
Using simulations and real fMRI data, we show that rep-
resentational spread consistently yielded better perfor-
mance for brain parcellations and connectivity models.
In simulations, representational spread outperforms acti-
vation strength and random selection for batteries from
3-16 tasks. We confirm these findings for real fMRI data,
for the cases of cerebellar and cortical parcellations, and
a cortico-cerebellar connectivity model. Our study there-
fore offers an automated method for optimizing task bat-
tery selection for different brain areas and demonstrates
the value of principled task selection for individual brain
mapping.
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Introduction
Accurately characterizing the functional organization of the
brain is a key goal of human neuroimaging. While group-level
analyses have traditionally been used to define regions of in-
terest, they often ignore the substantial inter-individual vari-
ability in brain organization (Mueller et al., 2013). This vari-
ability can limit the precision of group-based maps, especially
when applied to clinical or individualized settings.

Multi-task fMRI provides a powerful tool for individual
brain mapping, offering stronger domain-specific signals than
resting-state approaches (King, Hernandez-Castillo, Poldrack,
Ivry, & Diedrichsen, 2019). Recent work has shown the use of
rich task batteries can lead to more generalizable brain par-
cellations and connectivity estimates than resting-state data
(Nettekoven, CCN, 2025). However, with limited individual
scanning time, it becomes important to select the most infor-
mative subset of tasks to characterize specific regions.

In this paper, we compare two selection strategies for
individual-level analysis: Activation Strength (total task-
evoked signal compared to rest) and Representational Spread
( favoring batteries in which different subregions are maximally
uncorrelated). We compare each strategy to random selection
using simulations and real fMRI data. We study two applica-
tions: the functional parcellation of a target region, and the
estimation of connectivity between two brain structures - the
neocortex and cerebellum.

Methods and Results
Task battery construction
Across all experiments, we started with a library of potential
tasks, each connected to an activity pattern in the area of in-
terest. We assembled potential task batteries of different sizes
(3-16) from this library of potential tasks using three different
strategies:

Random Selection: The tasks selected for the battery
were chosen randomly from the library (without replacement).

Activation Strength: The tasks selected for the battery
were chosen to maximize the total activation magnitude in the
area of interest relative to rest.

Representational Spread: The tasks were selected to
make different subregions of the area of interest maximally
independent of each other. This was achieved by maximizing
the trace of the inverse task-by-task covariance matrix across
all tasks.

Each strategy was applied independently for each battery
size and resulting batteries were evaluated in parcellations
and connectivity models. In simulations, we generated arti-
ficial fMRI data by adding Gaussian measurement noise. All
batteries had the same length, such that the activity measure-
ments were more variable for batteries with increasing number
of tasks. For the real fMRI data, total scan time was matched
across batteries (8 minutes).

Parcellation - simulation
We simulated brain parcellation by generating a 2D grid of pix-
els representing a ground-truth parcellation with five equally
sized parcels corresponding to five functional regions (Fig.
1a). 100 task activation profiles were generated by sampling
random activation values for each parcel.

For each selected battery, we generated data for the se-
lected tasks. A parcellation was estimated by computing a
correlation of the task activation profiles of each voxel with
those of the task battery, assigning each voxel to the parcel
with the highest correlation. We measured parcellation accu-
racy using the Dice coefficient between the estimated and the
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Figure 1: Evaluation of task battery selection strategies
for individual brain mapping. (a) Simulated parcellation
with five ground-truth parcels. (b) Simulated connectivity from
structure A to structure B (c) Parcellation accuracy in sim-
ulated data across battery sizes. Accuracy was measured
as the Dice coefficient between estimated and ground-truth
parcels. (d) Connectivity modeling accuracy in simulations,
measured as the correlation between the estimated and true
connectivity weights. Error bars in (c) & (d) reflect variabil-
ity across different sampled libraries of potential tasks. (e)
Parcellation accuracy in real fMRI data, evaluated by the co-
sine similarity between predicted and observed activation pat-
terns in test data. (f) Connectivity modeling accuracy in real
data, measured as the correlation R between predicted and
observed cerebellar activity. Error bars in (e) & (f) indicate
variability across participants.

ground-truth parcel assignments. Batteries selected for good
representational spread consistently yielded the most accu-
rate parcellations, followed by activation strength, with random
selection performing poorest (Fig. 1c).

Connectivity - simulation

To evaluate the impact of task selection on functional connec-
tivity estimation, we simulated the first structure (structure A)
by randomly sampling activity profiles for 100 tasks across 10
regions. We then randomly generated ground-truth connec-
tivity weights W from a normal distribution from structure A to
another structure B with 100 voxels (Fig. 1b). Based on the
activity in A and the connectivity weights, we then generated
artificial data for all the voxels in structure B. This simulates
a region-to-region connectivity model, similar to those used
to model cortico-cerebellar connectivity (King, Shahshahani,
Ivry, & Diedrichsen, 2023).

For each selected battery, ridge regression was used to es-
timate connectivity weights from structure A to structure B.
Connectivity accuracy was calculated as the Pearson correla-
tion between the estimated and the ground-truth connectivity
weights.

As in the parcellation simulation, representational spread

showed the highest accuracy across battery sizes followed by
activation strength and random selection (Fig. 1d).

Parcellation - fMRI
To evaluate task selection strategies on real fMRI data we
used the Multi-Domain Task Battery (MDTB) dataset (King et
al., 2019). The dataset includes two scanning sessions (A and
B) with mostly unique but some overlapping tasks. We used
session B (32 task conditions) as our task library for task bat-
tery construction and parcellation estimation. Session A (29
task conditions) was used for evaluation.

For each selected battery, subject-specific parcellations
were estimated using the same correlation-based method as
for the simulation, assigning each voxel to the parcel with the
most similar task profile. The parcels were defined from the
Nettekoven atlas (Nettekoven et al., 2024).

Parcellation accuracy was evaluated by computing the av-
erage cosine similarity between predicted and observed ac-
tivation patterns on the test session (session A). Predictions
of the test data are calculated by projecting the activity pro-
files of the test data onto the estimated parcellation for the
battery. Representational spread produced the highest co-
sine similarity across battery sizes, with the largest improve-
ment observed in the 4-9 task battery range (Fig. 1e). Ac-
tivation strength performed similarly to random selection. All
selection strategies showed the same performance at higher
battery sizes indicating that at higher battery sizes the infor-
mation in all batteries converges to a state that yields similar
parcellation accuracy.

Connectivity - fMRI
We further tested task selection strategies in a cortico-
cerebellar connectivity modeling framework using the MDTB
dataset (King et al., 2023). Cortical responses were extracted
from the fs32k surface, while cerebellar responses were taken
from voxels in SUIT space. Session B data were used for train-
ing and session A for evaluation.

For each selected battery, subject-specific ridge regression
models were trained to predict cerebellar activity from cortical
activity using the selected battery.

Accuracy was defined as the average correlation R be-
tween predicted (using estimated connectivity weights) and
observed cerebellar activity patterns. Representational
spread yielded the most accurate predictions, with the biggest
advantage for battery sizes 4-9, followed by activation strength
and random selection (Fig. 1f).

Summary
Across both simulations and real fMRI data, task batteries
selected using representational spread consistently outper-
form activation strength and random selection. These bene-
fits were most apparent for 4-9 task batteries in fMRI and held
across both parcellation and connectivity modeling, as well as
across brain regions. Together, the results highlight the value
of using a data-driven optimization of task batteries that max-
imizes the functional diversity of the targeted brain area.
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