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Abstract 
From the moon landing to meal preparation, people 
plan sequences of actions to achieve their goals. A 
leading theoretical framework proposes that human 
planning follows an algorithm akin to tree search. 
This framework predicts that during the 
decision-making process, the brain updates its 
estimate of the value of the current state by 
iteratively expanding a tree of future states. To test 
this prediction, we collected whole-brain BOLD 
activity from participants as they planned their move 
in a strategic game. Activity in the ventral striatum 
was modulated by the state value estimated by a 
tree search model. Moreover, in this area, the activity 
earlier (later) in the trial was more strongly 
modulated by the value predicted by the model 
earlier (later) in the tree search. Searchlight analysis 
revealed areas associated with the Default Mode 
Network to represent features critical for planning. 
This work contributes to an emerging understanding 
of the neural basis of tree search. 
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Background and Introduction 
Planning, the process of simulating sequences of future 
decisions, is a cognitive capacity crucial in many 
domains, from navigation to social interaction. Despite 
recent progress in characterizing the cognitive 
computations involved in planning (Callaway et al., 2022; 
Mattar & Lengyel, 2022; van Opheusden et al., 2023), 
our conceptual understanding of the neural mechanisms 
of planning is still limited. 

Existing studies that rely on spatially localized 
brain lesions, and fMRI studies that contrast brain 
activation during planning versus rest states have 
revealed a network of brain regions involved in planning 
such as prefrontal cortex (PFC) (Unterrainer & Owen, 
2006), dorsomedial striatum (DMS) (Wunderlich et al., 
2012), ventral striatum (VS) (O'Doherty et al., 2004), and 
hippocampus (Vikbladh et al., 2019). More recently, an 
MEG study, has found neural markers of sequence 
rollouts, localized to the anterior medial temporal lobe 
(Vikbladh et al., 2024). However, there has been no 
account of the neural basis of the planning process as it 
unfolds during a trial. 
Task and Experiment Design. We used Four-in-a-Row 
(van Opheusden et al., 2023), a task that combined with 

the tree search algorithm, allows the trial based analysis 
of the neural data. On a 4x9 grid, players attempt to 
place four of their own pieces in a row horizontally, 
vertically, or diagonally. We recruited 35 paid 
participants. Each took part in two experiment sessions. 
In Session 1, the participant played 35 matches against 
a computer opponent (outside the scanner). In session 2 
after an anatomical scan, the participant completed 216 
trials in which they were presented with a board position 
chosen to differ in immediate and post-tree-search value 
assessment, and asked to choose the best move while 
undergoing fMRI data collection. The participant was 
allowed 15 s to choose, with a warning displayed at 10 s 
(Fig. 1). To encourage planning, we made the participant 
wait for the full 15 seconds, even if they responded early. 
Immediately after the fMRI session, the participant 
played a match against the computer for a monetary 
bonus, from one of the board positions they had chosen. 

 
Figure 1: Timeline of an example trial. 

Results 

Computational Model. The model implemented a form 
of heuristic search with two main components: a 
heuristic function and a tree search algorithm. The 
heuristic function provided an estimate of the value of a 
state as the weighted linear sum of 5 features:  
“4-in-a-row”, “3-in-a-row”, “unconnected 2-in-a-row”, 
“connected 2-in-a-row” and “center feature” (higher for 
pieces closer to the center of the board). The value V(s) 
was defined as the difference of the weighted feature 
counts of oneself and the opponent. The tree search 
algorithm improved the accuracy of value estimates by 
expanding nodes of a decision tree and recursively 
backpropagating the maximal value of the successor 
nodes to the predecessor nodes. To account for choice 
variability, we added three sources of noise. Prior to tree 

 



search, a feature may be randomly dropped with a 
probability δ, accounting for attentional oversight. During 
tree search, Gaussian noise is added to V(s) at each 
node, and a generic lapse rate λ. The algorithm stops 
randomly with probability γ on each iteration.  

We fit the computational model to the choices of 
each participant in the first session, to estimate, for each 
encountered position during the scanned session, which 
future states participants likely simulated, how they 
valued the position, and which moves they likely 
preferred over the course of planning.  
Value Representation. We first confirmed the ability of 
the model to predict participants’ choices, then used the 
fitted models to compute the participant’s “myopic value” 
(value assessment of the board position by the heuristic 
function before tree search) and the “tree search value” 
(final value assessment after tree search) for each board 
position in the fMRI session. We used standard 
univariate general linear models (GLMs) to estimate the 
degree to which the BOLD signal in each voxel was 
significantly modulated by the estimated “myopic value” 
and “tree search value”. Voxels within VS were 
modulated by tree search value (p=0.004) (Fig 2A). By 
design, search-derived values were uncorrelated with 
the myopic values, which (together with the long 
planning period) allowed us a strong test of both 
components of the model: the fast feature-based 
heuristic valuation and its hypothesized refinement by 
tree search, at the timescale of fMRI. 

Figure 2: A. BOLD responses in the ventral striatum 
were modulated by “tree search value”. B. 
Modulation in Ventral Striatum in trial thirds. 

 
We next decomposed the BOLD response in 

ventral striatum temporally by dividing each planning 

period into three parts . The correlation of the signal with 
myopic value (Fig 2B, left) peaked earlier in the trial than 
the tree-search-informed value (Fig 2B, right) , 
supporting the hypotheses that values are quickly 
estimated then slowly refined by mental simulation (Fig. 
2B, right). 
Feature Representation. Next, to examine 
computational precursors of value representation, we 
used representational similarity analysis to seek 
evidence that the brain represented boards in terms of 
the features used by the heuristic function. For each 
board, we calculated the vector of features  (e.g. the 
counts of “3-in-a-row”), for the player and the opponent. 
We then constructed the similarity matrix of all pairs of 
boards using their distance in the space of z-scored 
feature vectors. We also constructed neural similarity 
matrices (in a “searchlight” analysis, using Pearson 
correlation across board responses in spheres centered 
at each voxel). Finally, we compared the feature 
similarity and the response similarity matrices using 
Spearman correlations. This analysis identified 
precuneus and angular gyrus as reflecting similarity of 
boards for all features belonging to the player (Fig 3A) 
and angular gyrus and middle frontal gyrus as 
representing similarity in terms of the features belonging 
to the opponent (Fig 3B). These results suggest that 
regions of the Default Mode Network represent board 
features that are critical for planning. 

 
Figure 3: A.Precuneus and Angular Gyrus track 
presence/Absence of features for self, and B. 
angular gyrus and middle frontal gyrus for the 
opponent 

Discussion and Future Direction 

These results contribute to an emerging understanding 
of the neural basis of tree search, revealing where and 
when the brain represents features and values. In later 
analysis, we aim to seek the representations of board 
features that have been likely simulated during the 
planning process based on our model predictions.  
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