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Abstract
Even in infancy, children display sophisticated visual rea-
soning abilities, prompting long-standing debates over
whether they are innate or learned. To study this, recent
studies have trained computational models on egocentric
video datasets from children, e.g., BabyView. However,
they focused on perceptual tasks rather than more so-
phisticated visual reasoning, and used labels to fine-tune
model readout layers, thus limiting the strength of their
claims. In this work, we apply the recently developed Lo-
cal Random Access Sequence (LRAS) framework, which
progressively trains a series of self-supervised models.
We train LRAS on 800 hours (approximately 0.2 child-
years) of BabyView data. Our models successfully per-
form a range of 3D perceptual tasks for objects, depth,
and scenes, as well as cognitive tasks such as simula-
tion of future object motion and viewpoint changes, and
physical reasoning about object cohesion, solidity, agent-
object motion, and multi-object interactions. Notably, our
models perform tasks in a unified, zero-shot manner, thus
providing stronger evidence for the learning-based hy-
pothesis. Overall, we establish a computational proof-of-
concept that visual cognitive abilities can emerge from
developmentally realistic experience through statistical
learning with minimal innate priors.
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Introduction
Children show meaningful knowledge and reasoning about
objects, places, and agents (Spelke & Kinzler, 2007; Spelke,
2022). For example, experimental evidence shows they or-
ganize perceptual input into distinct objects with boundaries,
and reason about object cohesion, solidity, and interactions
with other objects. They recognize agents as beings that gen-
erate their own motion and cause changes to the state of the
world. Early emergence of these capacities has been taken as
evidence for innate systems of “core knowledge”, but this as-
sumption may not be valid if these capacities can be learned
from data accessible to the developing child.

We address this question by training deep neural networks
with self-supervised learning objectives on BabyView (Long et
al., 2024), a dataset of egocentric videos from children.

Prior work training models on child-egocentric videos has
mostly focused on visual representation and recognition learn-
ing, e.g., object recognition, action recognition, and segmen-
tation (Bambach, Crandall, Smith, & Yu, 2017; Orhan, Gupta,
& Lake, 2020; Zhuang et al., 2021; Sheybani, Hansaria,
Wood, Smith, & Tiganj, 2023). In contrast, in addition to per-
ceptual tasks such as segmentation and depth estimation, we

focus on visual cognition, the broad set of capacities that in-
clude physical simulation and reasoning about object behav-
iors, interactions between objects, and interactions between
animate agents and objects. In addition, prior work required
fine-tuning model readout layers using task-specific datasets
with labels to perform downstream tasks, whereas we do not.
This is crucial as non-human animals also exhibit visual cog-
nition but do not receive explicit labeled supervisory signals.

Methods
The Local Random Access Sequence (LRAS) framework
(Lee et al., 2025) (Figure 1, left) is a framework for pro-
gressively learning a series of self-supervised models from
video frames. We train the following models. (1) A tokenizer
that converts each image into patches of discrete tokens with
patch indices, allowing prediction in any desired order. (2) An
RGB model: (RGB0, sparse RGB1 → dense RGB1), which
can then be used as a flow extractor to extract motion (Flow)
between pairs of frames: (RGB0, RGB1 → Flow). Flow is
used to train an (3) RGB-Flow-to-RGB model: (RGB0, Flow →
RGB1) and an (4) RGB-to-Flow model: (RGB0, sparse Flow
→ dense Flow). BabyView contains videos with correspond-
ing inertial measurement unit (IMU) data, which records the
child’s head motion in acceleration and rotation units. We train
an RGB-IMU model: (RGB0, IMU → RGB1) that can predict
novel views of scenes based on specified head motions, e.g.,
predict how a scene looks after panning rightwards (Figure 1).
The tokenizer is a convolutional neural network with 40M pa-
rameters. The other models are autoregressive transformer
models; 1B for the IMU model and 7B for the others.

Each trained model has a single, unified interface to per-
form tasks. For example, we can probe the RGB model to
predict what happens if an object moves by providing RGB0
and a single RGB1 patch for the desired new location for the
object. The model will complete its RGB1 prediction of the
scene including how the object (and interacting objects) move.

Data. We train on BabyView, an ongoing dataset of ∼
800 hours of egocentric videos. The majority are longitudi-
nal recordings from the homes of children aged 6–36 months;
∼ 110 hours are from 3- to 5-year-old children in a preschool.

3DEditBench-Cog. We build a small benchmark to evalu-
ate simulation and reasoning about agent-generated motion,
object cohesion & motion, containment, support, and solidity
& force transfer. Each example contains both an initial and
ground truth frame (where objects are moved to new loca-
tions). Each model is run with 400 evaluations: 8 random
seeds for 10 examples in each of the 5 categories.

Comparisons. Comparison models are trained on 6000+
hours of diverse, non-developmental videos (Big Video



Figure 1: (Left) The Local Random Access Sequence (LRAS) framework progressively learns a series of self-supervised models
from videos. (Right) Our model learns (a) object localization and boundaries, (b) depth perception, and (c) predicts how the
scene will look if the head/camera is panned rightwards.

Figure 2: Our benchmark,
3DEditBench-Cog, evaluates model’s
simulation and reasoning abilities in
five categories (see column labels).
Top row shows model inputs: green
arrow specifies a single patch to
move, while red squares specify
patches fixed with no motion. Row
2 shows RGB-to-Flow model predic-
tions. Colors represent the direction
of motion predicted (see color wheel).
Row 3 shows RGB model predictions.
Row 4 shows accuracy, defined as
the percentage of examples where
the model prediction is more similar to
the target frame than the initial frame.

Dataset). We also compare to 1B parameter models.

Results
Perception. From a young age, children can segment ob-
jects from the background, perceive depth, and predict motion
(Arterberry & Kellman, 2016). Our model shows all of these
abilities in a single framework. Given a single object patch,
our model localizes all related object patches and bound-
aries (Figure 1, right), providing localization and segmentation
of objects. Our model performs stereoscopic depth estima-
tion: given two laterally-shifted views of a scene, our model
matches corresponding patches and uses their displacement
to infer depth–objects that are further away shift more. Finally,
our IMU-trained model can predict novel scene views based
on different potential camera motions.

Reasoning. Simulating hypothetical and counterfactual
possibilities is a core component of physical and causal rea-
soning (Gerstenberg, 2024). Our models succeed at simulat-
ing multi-object motions and interactions (Figure 2). In ad-
dition, infants show physical reasoning that objects do not
spontaneously break into pieces (cohesion), two rigid ob-

jects cannot occupy the same space (solidity), and hands
(agents) can cause other objects to move. Our models, cap-
ture these intuitions. All models predict single-object cohe-
sion, but only the flow-based models and the models trained
on non-developmental data succeeded in other tasks. This
suggests motion (flow) is a useful intermediate representation.

Discussion
Human infants show remarkable visual cognition from a young
age, reasoning about objects, agents, and their interactions
(Spelke, 2022). Here we take a first step towards investigat-
ing how this kind of simulation and reasoning can emerge from
a unified computational architecture trained on videos from
human children. This work is an initial proof-of-concept and
some work is ongoing; in particular, we train our models on
processed BabyView representations extracted using two pre-
trained models (tokenizer and flow extractor); these are cur-
rently being replaced with BabyView-trained models. Never-
theless, this work is a step towards a computational proof-of-
concept showing that visual cognitive abilities can be learned
from developmental data with minimal innate priors.
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