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Abstract
The brain uses contextual information and prior knowl-
edge to anticipate upcoming content during language com-
prehension. Recent research has shown that predictive
signals can be revealed in pre-onset electrocorticography
(ECoG) activity during naturalistic narrative listening, by
building encoding models based on word embeddings
from large language models (LLMs). Similarly, evidence
for long-range predictive encoding has been observed in
functional magnetic resonance imaging (fMRI) data, where
incorporating embeddings for multiple upcoming words
in a narrative improves alignment with brain activity. This
study examines whether similar predictive information
can be detected in MEG, a technique with higher tempo-
ral resolution than fMRI but a lower signal-to-noise ratio
than ECoG. Our findings indicate that MEG captures pre-
onset representations up to 1 second before word onset,
consistent with ECoG results. However, unlike fMRI find-
ings, incorporating future word embeddings did not en-
hance encoding in MEG, not even for one word into the
future, which suggests that the pre-onset encoding may
not reflect predictive processing. This work demonstrates
that MEG combined with LLMs is a valuable approach for
studying language processing in naturalistic narratives
and highlights the need to study further what constitutes
evidence for prediction during natural listening.
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Introduction
Predictive processing theories propose that the brain continu-
ously anticipates upcoming input based on context and prior
experience [Clark (2013); De Lange et al. (2018)]. Language
processing is one domain where predictions are thought to
play a crucial role, particularly in facilitating comprehension by
pre-activating linguistic representations [ Federmeier (2007);
Kutas et al. (2011)].

Despite strong evidence that prediction shapes language
processing, current methods fall short of capturing predicted
representations themselves. For example, the N400, a well-
known ERP marker of prediction error [Kutas & Federmeier
(2011); Terporten et al. (2019)], reflects post-onset processing
and does not directly reveal the contents of predictions. RSA-
based EEG work provides more direct evidence by decoding
features like animacy before word onset [Wang et al. (2020)].
However, many studies on prediction use artificial pacing or
tightly controlled stimuli, reducing the richness of linguistic
context and limiting ecological validity [Willems et al. (2020)].

Large-scale continuous speech datasets in combination with
large language models (LLMs) now enable the study of predic-
tive processing in naturalistic settings. LLMs provide context-
sensitive embeddings that align with brain activity across dif-
ferent imaging modalities [Baroni (2022); Caucheteux & King
(2022); Goldstein et al. (2022)].

In this study, we use LLMs to investigate predictive process-
ing in MEG, drawing on two key prior works. [Goldstein et
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Figure 1: Encoding of words relative to word onset. a.
Brain scores are significant across most regions across sub-
jects, peaking in left temporal and inferior frontal areas linked
to language processing. b. GPT-2 embeddings yield the high-
est brain scores, followed by GloVe, with arbitrary embed-
dings lowest. Pre-onset encoding persists with Glove and
arbitrary embeddings but vanishes when repeated bigrams
are removed, reducing both pre- and post-onset effects. Error
bars denote standard error across MEG sources; stars indicate
FDR-significant values.

al. (2022)] found that ECoG signals encode upcoming words
up to two seconds before onset during natural speech. We
test (1) whether similar pre-onset encoding can be detected
in MEG, which is non-invasive but has lower signal-to-noise.
We also build on Caucheteux et al. (2023), which showed
that adding future word embeddings improved LLM-to-fMRI
mapping, suggesting long-range prediction. However, fMRI’s
low temporal resolution obscures word-level timing. Here, we
leverage MEG’s higher temporal resolution to ask: 2) Does in-
corporating future embeddings improve MEG–LLM alignment,
as seen in fMRI?

Methods
Neural data and word embeddings

Here we used an openly available dataset containing MEG
recordings collected while three native English-speaking partic-
ipants (1 female; aged 35, 30, and 28 years) passively listened
to 10 stories from the Adventures of Sherlock Holmes [Armeni
et al. (2022)]. We extracted contextual word embeddings using
the pre-trained GPT2-small model (12 layers), processing to-
kenized story chunks in 50-token windows and retrieving the
final layer’s hidden state for the last token. For non-contextual
embeddings, we used 300-dimensional GloVe vectors. Em-
beddings were reduced to 50 dimensions via PCA to minimize
computational load.
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Figure 2: Encoding of the future and past words. a. The
embedding vector is constructed by concatenating d future
word embeddings (d > 0) or |d| past word embeddings (d < 0)
along with the embedding of the current word wi. b. Encoding
enhancement, ∆R , is shown for negative (upper) and positive
(lower) values of d. Vertical gray lines mark the median inter-
word interval values. Adding each successive future word
embedding improves encoding only after that word is heard
in the narrative, while including previous words consistently
improves encoding beyond their offset.

Encoding model and brain score
The encoding model was built using linear ridge-regression
with word embeddings as predictors and brain response as
targets. A separate model was fit for each time point within the
[-2 to +2 sec] window. We assessed model performance using
5-fold cross-validation, training on 80% of the story and testing
on the remaining 20%. To evaluate model fit, we computed
the Pearson correlation between the predicted and actual brain
signals at each time point t around word onset across all words
to compute the brain score R . To compute the brain-wide brain
score, we selected 30 MEG sources per participant. To prevent
double dipping, we averaged scores from two participants and
used the top 30 sources to evaluate the third.

Results
LLM embeddings align with MEG responses
Most MEG regions showed significant encoding with strongest
effects in left temporal and inferior frontal areas (Fig. 1.b) asso-
ciated with language processing. Brain scores peaked within
500 ms post-onset consistently across all 10 hours of the data.

To test whether pre-onset encoding reflects contextual pre-
diction or arises from other properties of word embeddings, we
conducted control analyses using static GloVe embeddings,
which lack contextual information and arbitrary embeddings,

which lack lexico-semantic information. Pre-onset encoding
persisted with GloVe but was attenuated, suggesting that con-
textual information in gpt2 embeddings cannot explain all pre-
onset encoding. Using arbitrary embeddings eliminated seman-
tic and statistical dependencies while preserving word identity,
yet significant pre-onset encoding persisted. To test whether
this residual signal reflected learning of word co-occurrence
patterns, we removed all repeated bigrams from the narrative.
This abolished pre-onset encoding in the arbitrary condition.
These controls indicate that statistical regularities, such as
word co-occurrences, contribute to pre-onset encoding, cau-
tioning against a straightforward interpretation of these signals
as evidence of predictive processing.

Evidence for postdiction and not prediction

Extending Caucheteux et al. (2023), we tested whether con-
catenating future word embeddings improves encoding. Unlike
their fMRI results, MEG showed no improvement at word on-
set (Fig. 2.b); increases in brain score emerged only 300 ms
later—after the current word onset. Given the average inter-
word interval of 230 ms, this increase is likely due to the fact
that the next word has already been heard by this point in
the narrative. In contrast, including previous words improved
encoding at word onset, strongest for the immediately prior
word. This temporal asymmetry held for both GPT-2 and GloVe,
and persisted across control analyses. These results further
support the idea that past words remain active while future
words are not pre-encoded in MEG signals.

Discussion

This study shows that word representations can be robustly
encoded in MEG during naturalistic listening, even with just one
hour of data. We observed pre-onset representations similar to
those in ECoG, though we cannot rule out that these pre-onset
signals are due to correlations between nearby embeddings
and by word co-occurrences. Unlike fMRI findings, adding
future word embeddings did not enhance encoding, even for a
single word in the future, however we found robust evidence
for postdiction. This suggests that many words are not imme-
diately integrated into context, and that processing may not
be strictly time-locked to word onset [ Gwilliams et al. (2018);
Hogendoorn (2022); Szewczyk et al. (2022)]. These results
align with findings from Toneva et al. (2022), who found that
MEG predominantly captured lexical (single-word) information
of current and previous word. In contrast, fMRI signals showed
robust encoding of supra-word representations (information
arising from combinations of words independent of lexical infor-
mation). Together these findings may suggest that predictive
information may be encoded in a form not readily accessible
to MEG—perhaps due to its supra-word, abstract, or spatially
distributed nature, whereas postdictive information is likely re-
accessed during the processing of the current word, making it
more readily detectable with MEG.
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