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Abstract

Neural encoding models allow for the exploration of hy-
potheses about cognitive processes by linking brain ac-
tivations to representations derived from large language
or image models. However, such representations of-
ten remain poorly understood, limiting the interpretabil-
ity of neural encoding models. Therefore, we set out
to examine the effect of scene graph properties on im-
age model representations and neural encoding perfor-
mances to functional magnetic resonance imaging (fMRI)
data from the Natural Scenes Dataset (NSD). Specifically,
we used the overlap between the NSD and the Visual
Genome to characterize each image using the number
of relationships, objects and depth of the accompanying
scene graph annotations. We found that relationships
and depth measures could be decoded more accurately
both from fMRI activations and from image embeddings
compared to objects, alighing with an afforance-based
scene perception approach.
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Introduction

Neural encoding refers to the prediction of neural representa-
tions, such as activations obtained from functional magnetic
resonance imaging (fMRI), from stimuli like images or sen-
tences (Naselaris, Kay, Nishimoto, & Gallant, 2011). More re-
cently, large language or vision models have been leveraged
to represent the stimuli, allowing for the exploration of compre-
hensive hypotheses about both cognitive processes and the
inner workings of foundation models through neural encoding
(Oota et al., 2024).

When comparing the layer-wise alignment of language
models with neural activations, previous research suggests
that middle layers result in the best neural encoding perfor-
mance (Jain & Huth, 2018; Toneva & Wehbe, 2019). This
alignment is substantially influenced by syntactic information
implicitly encoded in language model representations, in par-
ticular the constituency parse tree depth (Oota, Gupta, &
Toneva, 2023). In vision models, however, it remains unclear
how the structure of a natural scene may influence the align-
ment of a vision model to brain activations, forming a critical
gap for testing more targeted hypothesis about cognitive and
model mechanisms.

Therefore, this study investigates the effect of scene graph
properties on the neural encoding performance between the
visual transformer (ViT) model (Dosovitskiy et al., 2021) and
fMRI activations from the Natural Scenes Dataset (NSD)
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Figure 1: Overview of our proposed three-way comparison of
ViT embeddings, fMRI activations and scene graph proper-
ties. fMRI, functional magnetic resonance imaging; MVPA,
multivariate pattern analysis; NSD, natural scenes dataset;
ViT, visual transformer

(Allen et al., 2022) using scene graph annotations from the
stimuli that overlap with the Visual Genome (VG) (Krishna et
al., 2017). We hypothesize that relationships, and specifically
relationship-based depth measures are decodable from both
neural data and image embeddings.

Methods

Data To investigate the link between scene graph properties
and neural encoding performances, we used the 73,000 NSD
(Allen et al., 2022) images as a starting point, and focused
on a subset of 28,459 images that had accompanying scene
graph annotations from the VG (Krishna et al., 2017).

Scene Graph Properties For each image, a scene graph
was constructed from the VG metadata. To ensure high quality
scene graphs, we only included relationships that contained at
least one living being as a subject or object. Next, we derived
three characteristics from each graph: (1) The number of rela-
tionships/edges, (2) number of objects/nodes and (3) depth of
the graph (i.e., the longest shortest distance between any two
nodes in the graph, as the graphs are not necessarily trees).
Then, we binarized each characteristic as either low or high
based on whether it was below or above the median value
across all graphs.

Neural Encoding We first determined the layerwise neural
encoding performances of the ViT model and fMRI activations
from the regions of interest specified by the NSD general mask
(see lower part of Figure 1). Performances were separately
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Figure 2: Comparison of visual transformer-based image embeddings, fMRI activations and scene graph properties using neural
encoding, MVPA and linear probing. fMRI, functional magnetic resonance imaging; MVPA, multivariate pattern analysis

evaluated using pairwise accuracies and Pearson correlations
(Oota et al., 2024) for the embeddings of each ViT layer.

Multivariate Pattern Analysis We then used multivariate
pattern analysis (MVPA) to investigate the accuracy with
which the three scene graph characteristics can be predicted
from the fMRI activations (see right part of Figure 1).

Linear Probing Finally, and analogously to the MVPA, we
examined whether the scene graph properties can be pre-
dicted from the ViT embeddings using linear probing for each
layer (see left part of Figure 1). We evaluated the linear prob-
ing performance using F1 scores.

Results

The neural encoding accuracies & Pearson correlations,
MVPA and linear probing results are shown in Figure 2a &
2b, Figure 2c¢ and Figure 2d, respectively. Both layerwise neu-
ral encoding pairwise accuracies and pearson correlations ex-
hibited a similar pattern, with the middle layers yielding the
highest performances, and substantially lower performances
for the first and last layers. Further, we observed the highest
MVPA accuracies for the number of relationships, closely fol-

lowed by the depth. In a similar manner, the linear probing
results revealed that that across all layers, the prediction of
the number of objects barely surpassed chance performance.
Conversely, the number of relationships and depth measures
led to considerably higher linear probing-based F1 scores, es-
pecially across middle and late model layers.

Discussion

We aimed to investigate the effect of the structure of a scene
on neural encoding performances between fMRI activations
and ViT image embeddings. Our neural encoding results mir-
ror layerwise performance differences that were observed in
language models (Jain & Huth, 2018; Toneva & Wehbe, 2019).
With regard to scene graph properties, we found that rela-
tionships and depth measures could be decoded more ac-
curately both from fMRI activations and from ViT image em-
beddings compared to objects. This finding aligns with an
affordance-based scene perception approach (Gibson, 1977),
which states that the perception of a scene is primarily defined
by its enabled actions. Lastly, the binarization of the scene
graph properties presents a considerable reduction, and fu-
ture work should explore more granular settings.
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