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Abstract

Remembering visual orientations involves systematic bi-
ases in human working memory. We tested whether vi-
sion models exhibit analogous orientation biases when
exposed to rotated real-life objects and if they repre-
sent orientations independent of object identity. Us-
ing representational similarity analysis (RSA), we com-
pare the representational geometries from eight vision
models and human behavioral reports to theoretical pat-
terns of orientation encoding and bias. Our analysis dif-
ferentiated between two representational domains: the
180° space (2-fold rotationally symmetric), and the 360°
space (distinguishing ’up’ vs. ’down’). To examine the
extent to which orientation representations generalized,
we compared artificial neural network (ANN) activations
within- and between-objects. We found that vision mod-
els showed orientation encoding in 180° space and ex-
hibited a pronounced attraction bias, unlike the charac-
teristic repulsion effects observed in human participants.
Further, the vision models display limited 360° orienta-
tion encoding, with inadequate cross-object generaliza-
tion. In contrast, human working memory reports read-
ily reflected orientations in 360° in a generalized fash-
ion. Thus, while contemporary vision models can repre-
sent stimulus-specific orientation information, they fail to
replicate abstract object-independent orientation encod-
ing and bias that humans effortlessly achieve. Our find-
ings underscore critical limitations of current vision mod-
els for studying visual working memory processing.

Introduction

During Visual Working Memory (WM) remembered orienta-
tions are repelled away from cardinal axes. These biases
are well-documented for grating stimuli within 180° space
(Tomassini, Morgan, & Solomon, 2010; de Gardelle, Kouider,
& Sackur, 2010; Girshick, Landy, & Simoncelli, 2011; Appelle,
1972). WM maintenance of orientation information has been
shown to involve lower-level visual loci (Chunharas, Hettwer,
Wolff, & Rademaker, 2023; Dake & Curtis, 2025; Iamshchin-
ina, Christophel, Gayet, & Rademaker, 2021; Sheehan & Ser-
ences, 2022; Duan & Curtis, 2024; Harrison & Tong, 2009).
ANN models of vision have been used to emulate represen-
tations found in the ventral stream, offering insights into how
humans process and represent visual information (Conwell,
Prince, Kay, Alvarez, & Konkle, 2024; Schrimpf et al., 2018).
Repulsion biases for grating stimuli also replicate in vision

models and might originate from the prevalence of horizon-
tal and vertical visual stimuli in the environment (Henderson &
Serences, 2021). However, grating stimuli are symmetric and
thus only cover 180° of rotational space. We recently found
that cardinal repulsion bias extends to real-world objects in
360° orientation space even with stimuli of “orthogonal” spatial
dimensions (e.g. table vs. tower)(Linde-Domingo & Spitzer,
2024; Yizhar, Bauer, Pont-Sanchis, Bröhl, & Spitzer, 2025).
This indicates a high level of abstraction, where remembered
orientations are generalized, independent of the object’s phys-
ical characteristics. In this work, we want to explore if pre-
trained contemporary vision models are plausible computa-
tional frameworks for the described visual working memory
phenomena. Our analyses address four questions: (i) Can
deep vision models encode the orientation of real-world ob-
jects in 360° orientation (beyond visual gratings)? (ii) Do vi-
sion model representations show cardinal repulsion biases for
rotated real-life objects, analogous to human orientation bi-
ases? (iii) Do the models’ learned orientation representations
generalize cross-objects?

Methodology
We analyzed the layer activations of current vision mod-
els used in cognitive neuroscience, including three brain-
inspired CNNs (CORNet-S/RT/Z) (Kubilius et al., 2018), es-
tablished feedforward CNNs (AlexNet, VGG19, ResNeXt-101)
(Krizhevsky, Sutskever, & Hinton, 2017; Xie, Girshick, Dollár,
Tu, & He, 2017; Simonyan & Zisserman, 2014), and two vision
transformers (ViT-B, SLIP) (Dosovitskiy et al., 2021; Mu, Kir-
illov, Wagner, & Xie, 2021), viewing images of rotated objects
(Fig 1a). Human behavioral reports were collected employing
a retro-cued Visual Working Memory task, similar to Linde-
Domingo (2024) with a free object rotation task and a subset
of nine images (n=40). Using RSA (Kriegeskorte, 2008), we
conducted two complementary analyses: the Within-Object
analysis compared different orientations of the same object,
creating RDMs for responses at various orientations, while
the Between-Object analysis compared responses to differ-
ent objects across multiple orientations. The resulting vision
model and human behavioral RDMs were compared for simi-
larity with theoretical templates representing 180° or 360° ori-
entational space and biases.

Results and Conclusion
i) Weak 360° Orientation Representations in Vision Mod-
els: In the Within-Object analysis, we found that the tested
vision models do form some representation of an object’s full



Figure 1: Data collection of vision model activations and human behavior, Orientation Space evaluation, and Bias evaluation. (a) Rotated real-
life object images were presented to eight vision models (3 CNNs, 3 brain-inspired CNNs, 2 Vision Transformers) and 40 human participants.
Resulting orientation-based RDMs were compared to six theoretical RDMs to determine whether orientation encoding was tuned for 180° or
360° and systematically biased. (b) Within-object analysis of similarity (Spearman correlation) between vision models’ layer activation RDMs
and theoretical RDMs shows 180° encoding in early to mid layers, shifting to 360° representation in late layers. Human behavior exhibits a 360°
structure. (c) Within-Object attraction and repulsion bias across NN layers and human behavior for 180°/360° spaces, revealing systematic
deviations from uniform encoding and opposing bias between models and human behavior.

orientation (0–360°). Still, this weak pattern only emerges in
the deepest layers. Early to mid-layer representations in the
models were invariant to a 180° flip (e.g. treating an object at
0° and 180° as similarly oriented regarding activations). Only
the later layers carried any information distinguishing upright
from inverted object views (Fig. 1b). Here, object-dependent
similarities for the two orientation domains are similar, how-
ever only four of the eight models were deep enough to con-
sider a fifth layer. Importantly, this finding pertains only to
orientation-encoding for the same object (Within-Object anal-
ysis). The models’ weak late-layer representations suggests
that, unlike humans (Yizhar et al., 2025), vision models trained
on object recognition do not preserve complete 360° orien-
tation information throughout their hierarchy. ii) Absence of
Human-Like Orientation Biases: Next, we asked whether
vision models exhibit biases in their encoding of object orien-
tation comparable to systematic human biases. We found no
evidence of a 360° orientation bias, as expected if the vision
models do not possess a strong 360° representation of ob-
ject orientation. However, the 180° representation bias anal-
ysis revealed a robust preference for attraction over repulsion

models, indicating an attraction bias rather than a repulsion
bias to cardinals. This contrasts with human behavioral re-
ports, where a 360° bias is characterized by a stronger repul-
sion from cardinal axes. Interestingly, the vision models’ bias
was stronger in Within-Object than in Between-Object com-
parisons. Suggesting that the model’s systematic deviation
from uniform encoding is tied to object identity.

iii) No Generalization of Orientation Encoding Across
Objects: We investigated whether the 360° orientation infor-
mation in the models is abstract enough to generalize across
different objects. The difference between the Within- and
the Between-Object analysis can be interpreted as the ab-
straction of orientation independent of object identity because
the Within-Object analysis isolates the effect of orientation on
the same object representation in contrast the between-object
analysis examines how orientation changes that representa-
tion across different object identities. Within-object analysis
shows a 2-fold rotationally symmetric 180° representation en-
coding in early to mid layers, shifting to 360° representation
in late layers. The vision models’ representational space sig-
nificantly matches 180° encoding across all layers (between



objects), with no significant 360° representation. Interest-
ingly, the 180° similarity is much weaker between objects than
within, suggesting that orientation is entangled with object
identity. Thus the models show a generalized ”sense of direc-
tion” in 180° tied to object identity, but fail to display any ab-
stract orientation representation across objects. In summary,
our findings highlight a significant gap between human and vi-
sion model orientation encoding. While vision models demon-
strate limited 360° orientation encoding and exhibit an attrac-
tion bias in 180° space, they fail to generalize across objects
or replicate the human-like 360° repulsion bias. These results
emphasize the limitations of current vision models in achiev-
ing robust, object-independent orientation encoding. This mis-
match may impair the ”out-of-the-box” utility of vision models
as computational frameworks for abstraction and bias in hu-
man visual working memory.

Figure 2: Between-Object analysis of similarity: Spearman correla-
tion between vision models’ layer activation RDMs and orientation
RDMs show strong alignment with 180° encoding across layers.
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B. (2025). Abstracted representation of object orientation
during working memory in early visual cortex. (Manuscript
in preparation)

http://dx.doi.org/10.3389/neuro.06.004.2008
http://dx.doi.org/10.3389/neuro.06.004.2008
http://dx.doi.org/10.1101/407007
http://dx.doi.org/10.1101/407007

	Abstract
	Introduction
	Methodology
	Results and Conclusion
	References

