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Abstract
A common assumption in AI is that multimodal models
learn language in a more human-like way than language-
only models, as they can ground text in images or audio.
However, empirical studies checking whether this is true
are largely lacking. We address this gap by comparing
word representations from contrastive multimodal mod-
els vs. language-only ones in the extent to which they
capture experiential information—as defined by an exist-
ing norm-based ‘experiential model’—and align with hu-
man fMRI responses. Our results indicate that, surpris-
ingly, language-only models are superior to multimodal
ones in both respects. Additionally, they learn more
unique brain-relevant semantic information beyond that
shared with the experiential model. Overall, our study
highlights the need to develop computational models that
better integrate the complementary semantic information
provided by multimodal data sources.

Keywords: semantics; language modelling; fMRI; multimodality

Introduction
The relationship between abstract linguistic representations
and the real-world entities they refer to is central to the aca-
demic discourse around semantics—the ‘symbol-grounding
problem’ (Harnad, 1990; Bender & Koller, 2020). While some
researchers view word meanings as purely symbolic (Fodor,
1983), a great body of cognitive and neuroscientific work in-
spired by embodied cognition (Barsalou, 2008) emphasises
that words have meanings precisely because they are linked
to specific entities, experiences or notions.

These ideas have motivated a line of computational work
aiming to create more human-like language models by learn-
ing text representations from sources other than text, such as
images or audio. The early efforts in this direction (Bruni, Tran,
& Baroni, 2014; Silberer & Lapata, 2012) were characterised
by 1) a focus on developing human-aligned computational
models of meaning and 2) limited computational modelling re-
sources available. By contrast, more recent works (Deitke et
al., 2024; Liu, Li, Li, & Lee, 2024) share 1) a focus on solving,
or improving performance on, downstream tasks (e.g., image
captioning, visual question answering, visual reasoning), and
2) the availability of massive datasets and large models with
billions of parameters. Despite the differences, all these ef-
forts have presented multimodality as a desideratum, assum-
ing that images and audio provide additional semantic infor-
mation that cannot be learnt from text alone; however, there
is little to no work investigating which these semantic aspects
are. Here, we aim to fill this gap by addressing the following
question: Do recent multimodal models learn some facets of
meaning related to perceptual experiences that language-only
models cannot capture?

To approach this issue, it is necessary to first to oper-
ationalise the ‘extra-linguistic’ information that multimodal
models allegedly learn. We tackle this challenge by relying
on a norm-based semantic model introduced by Fernandino,

Tong, Conant, Humphries, and Binder (2022) to capture
‘experiential information’. By comparing word representations
from multimodal and language-only models against the
experiential semantic model and fMRI responses, we shed
light on the semantic information they capture and expose
their limitations as cognitive models of human semantics.
For a more detailed description of the present study, see
Bavaresco and Fernández (2025).

Experiments

Methods

In this study, we compare five AI models in their ability to 1)
reflect experiential semantic information and 2) align with hu-
man fMRI responses to single words.

The set of linguistic stimuli we focus on includes 320 nouns,
half of which refer to objects and the other half to events. For
these words, we consider an experiential semantic model—
EXP48—created by asking crowdworkers to rate each word
on 48 predefined dimensions (e.g., Vision, Hand action or
Unpleasant) aimed at capturing people’s experience of the
content described by words. This EXP48 model represents
each word as a 48-dimensional array where each entry corre-
sponds to averaged human ratings.

fMRI responses for the same word stimuli were collected
by recording brain activity in a ‘semantic network ROI’, as de-
fined by Binder, Desai, Graves, and Conant (2009), from 36
participants, who viewed each noun in isolation and were in-
structed to rate it according to the frequency with which they
experienced the corresponding entity in daily life. Both EXP48
and the fMRI responses were introduced and made publicly
available by Fernandino et al. (2022).

Through representational similarity analysis (RSA)
(Kriegeskorte, Mur, & Bandettini, 2008), we compare word
representations extracted from five AI models against
EXP48 representations and fMRI responses. The AI models
we consider comprise three contrastive models and two
non-contrastive ones, included as a baseline. The con-
trastive models are: SimCSE (Gao, Yao, & Chen, 2021),
a transformer-based (Vaswani et al., 2017) language-only
model trained on pairs of Wikipedia sentences with different
drop-out masks applied; MCSE (Zhang, Mosbach, Adelani,
Hedderich, & Klakow, 2022), a vision-language model
trained contrastively on image-caption pairs; CLAP (Wu et
al., 2023), an audio-language model trained contrastively
on audio-caption pairs. All three models were pretrained
with similar, contrastive learning objectives and share the
same BERT-based (Devlin, Chang, Lee, & Toutanova, 2019)
architecture as language encoder. For reference, we also
evaluate BERT and its vision-language extension VisualBERT
(Li, Yatskar, Yin, Hsieh, & Chang, 2019).

Since all these AI models were trained to output contex-
tualised word representations from input text sequences, we
note that single words may be an out-of-distribution input.
To address this issue, we embed words in five neutral sen-
tence templates (e.g., Someone mentioned the [word])
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Figure 1: Results from RSA. On the left, Spearman correlations between EXP48 representations and model representations. On
the right, initial (lighter shades) and partial (darker shades) correlations between model representations and fMRI responses.

when passing them to the models. To obtain a single vec-
tor representation for each word, we first isolate the hidden
states of the target-word tokens (discarding those from the
rest of the sentence template); next, we average them; finally,
we average these target-word hidden states across templates.
We extract representations from all model layers and report
RSA results considering an average of the representations
from the three layers yielding the highest alignment individ-
ually. For RSA, we compute all pairwise distances using the
cosine metric and measure the alignment between represen-
tational spaces as Spearman correlation.

Results

Results from our experiments are reported in Figure 1. We en-
sure that differences between models are statistically signifi-
cant by conducting appropriate statistical tests with Bonferroni
corrections for multiple comparisons.

RSA against EXP48 (Figure 1’s left panel) indicates BERT
as the most aligned model (ρ = 0.53); SimCSE and MCSE
also display moderate correlations with EXP48 (ρ = 0.52 and
ρ = 0.45, respectively). In contrast, CLAP’s representations
are poorly aligned with EXP48, exhibiting a correlation of just
0.03. A comparison between vision-language models (MCSE
and VisualBERT) and their unimodal counterparts (SimCSE
and BERT) reveals that the former, surprisingly, reflect less
experiential information than the latter.

Regarding alignment with brain responses (Figure 1’s right
panel, light-shade bars), BERT is again the best model (ρ =
0.23), although remaining less brain-aligned than EXP48 (ρ =
0.27). All other models display positive correlations, with the
exception of CLAP, whose correlation is not statistically signifi-
cant (ρ = 0.00, p = 0.70). Similarly to the EXP48-alignment re-
sults, here we find the language-only models BERT and Sim-
CSE to be more brain-aligned than their vision-language ex-
tensions VisualBERT and MCSE.

To further assess how much of each model’s brain align-
ment is attributable to independently-acquired semantic in-
formation as opposed to semantic knowledge shared with
EXP48, we conduct a partial correlation analysis where
EXP48’s representational dissimilarity matrix (RDM) is re-
gressed out from each model’s RDM. An interesting result

revealed by this analysis is that, although MCSE is more
brain-aligned than VisualBERT, their unique contribution with-
out EXP48 is the same in absolute value (ρ = 0.06); in other
terms, 50% of VisualBERT’s brain alignment is due to unique
information, while in MCSE it is 32%. Regarding BERT and
SimCSE, the majority of their initial brain alignment is eroded
when regressing out EXP48; however, the asymmetry is not
substantial, and the unique contribution accounts for more
than 40% of the initial brain alignment in both models. As for
CLAP, it exhibits a weak negative correlation that is not statisti-
cally significant, confirming that the model does not contribute
any brain-relevant information.

Discussion and Conclusions

While multimodal models are often expected to learn addi-
tional semantic aspects that language-only models cannot
learn, our results reveal that their word representations are
less aligned with EXP48 and fMRI responses than those by
language-only models. Moreover, within multimodal models,
the vision-language ones show moderate positive correlations
with EXP48 and fMRI responses, while the audio-language
one correlates weakly with EXP48 and does not yield a sig-
nificant correlation with brain responses. A potential expla-
nation for our findings is that the dimensions used to create
EXP48 are moderately abstract, whereas the extra information
learnt by multimodal models may concern lower-level features
or patterns of co-occurrence.

Altogether, our study invites caution against assuming that
multimodal models are necessarily more human-like than
language-only ones, and indicates that there is significant
room for improving current computational language models
so that they learn the brain-relevant experiential information
they currently lack—how to concretely achieve this remains
an open question.
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