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Abstract
Text representations from language models have proven
remarkably predictive of human neural activity involved
in language processing. However, the word represen-
tations learnt by language-only models may be lim-
ited in that they lack sensory information from other
modalities. Here, we leverage recent AI advancements
in multimodal modelling to investigate whether current
pre-trained vision-language models (VLMs) yield con-
cept representations that are more aligned with human
brain activity than those obtained by models trained
with language-only input. Our results reveal that VLM
representations correlate more strongly than those by
language-only models with activations in brain areas
functionally related to language processing. Altogether,
our study indicates that vision-language integration bet-
ter captures the nature of human concepts.

Keywords: Deep neural networks; fMRI; vision and language
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Introduction
How does the brain represent semantic knowledge? Whereas
many computational models of language still build on the idea
that meaning can be extracted from text corpora (Piantadosi
& Hill, 2022), increasing evidence from cognitive science and
neuroscience suggests that human semantic representations
are in fact grounded in sensory experiences (Louwerse, 2011;
Barsalou, 1999; Harnad, 1990; Bergen, 2012).

Here, we investigate the ability of vision-language models
(VLMs) implemented as deep neural networks to capture mul-
timodal aspects of human semantic processing. From the per-
spective of technical applications, there is no doubt that VLMs
can perform tasks, such as visual question answering and im-
age captioning, that are simply impossible for language-only
models. This opens the intriguing question of whether VLMs
also learn text representations that model human language
processing more accurately. More concretely, we investigate
the following key research question: Are representations in
current pretrained VLMs better models of brain activity in-
volved in concept word processing than those in text-only lan-
guage models? Human concept representations seem to re-
flect knowledge from different modalities (Dirani & Pylkkänen,
2024). Since VLMs are trained to align input from visual and
linguistic streams, we hypothesise they will exhibit an advan-
tage over text-only language models in modelling brain activ-
ity during concept processing. In the following, we summarise
our study and refer the reader to Bavaresco, de Heer Kloots,
Pezzelle, and Fernández (2024) for more details.

Methods
Data To study the alignment between (V)LMs and brain re-
sponses, we focus on a publicly available fMRI dataset con-
taining neural responses to concept words (Experiment 1 in
Pereira et al., 2018). We consider two experimental condi-
tions: (1) a language-only sentence condition where each

word appears boldfaced in the context of a sentence that
makes the relevant concept salient; participants see six sen-
tences, one at a time; (2) a multimodal picture condition where
each word is presented together with an image illustrating the
relevant concept; again, for each concept word, participants
are shown six different images, one at a time. 16 participants
were scanned while viewing the words in these two conditions.
Voxel activations for each participant are averaged across the
six presentations of the same word per condition. We focus
on two functionally localised brain networks: the Language
network (Fedorenko, Behr, & Kanwisher, 2011), reporting re-
sults separately for the left hemisphere (LH) and the right
hemisphere (RH), and the Visual network (Power et al., 2011;
Buckner, Andrews-Hanna, & Schacter, 2008).

Models We employ two main types of deep neural network
models: a set of VLMs trained on related visual and textual
input and a set of language-only models trained exclusively
on text. We focus on models widely applied for Natural Lan-
guage Processing applications and use them off-the-shelf as
pre-trained by their developers.

We test three families of VLMs corresponding to different
vision-language integration strategies: (1) Contrastive VLMs:
CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021);
(2) Vision-language encoders: VisualBERT (Li, Yatskar, Yin,
Hsieh, & Chang, 2019) and LXMERT (Tan & Bansal, 2019);
(3) Generative VLMs: IDEFICS2 (Laurençon, Tronchon, Cord,
& Sanh, 2024) and LLaVA NeXT (Liu et al., 2024).

Regarding the language-only models, we include architec-
tures that either provide informative baselines or useful com-
parisons with specific VLMs. Concretely, we experiment with
one encoder-only language model —BERT (Devlin, Chang,
Lee, & Toutanova, 2019), which underpins the language com-
ponents of ALIGN, VisualBERT, and LXMERT— and two gen-
erative large language models — Mistral (Jiang et al., 2023),
which is the language model used in IDEFICS2, and Llama3
(Meta, 2024), used in LLaVA NeXT. In addition, we include
a simpler distributional semantic model —GloVe (Pennington,
Socher, & Manning, 2014)— for reference.

Procedure & Evaluation To extract model representations
that we can compare to the fMRI responses, we feed the mod-
els with the same stimuli presented to the participants. In the
sentence condition, we input the sentences read by partici-
pants. In the picture condition, both the target word and each
image accompanying it are fed to the VLMs, and only the tar-
get word is fed to the language-only models. In both con-
ditions, we average the representations extracted from the 6
sentences or the 6 images per word, repeating this procedure
for each model layer whenever possible.

We quantify model alignment to neural activity using Rep-
resentational Similarity Analysis (RSA; Kriegeskorte, Mur, and
Bandettini, 2008), based on cosine-distance Representational
Dissimilarity Matrices (RDMs) for both the model and brain
representations. We average across participants on the fMRI
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Figure 1: Representational Similarity Analysis results for the sentence condition (left) and the picture condition (right). Correla-
tions are reported for the best layers, which differ across brain networks.

side and compute RDMs separately for each layer on the
model side. Here, we only report results from the best layer.
Alignment is measured by the Spearman correlation between
RDMs. In both the main experiment and ablation studies, we
conduct appropriate statistical tests to verify that correlation
differences between models are significant.

Main Results

Overall, our results in the sentence condition (Figure 1, left)
indicate that the VLMs IDEFICS2 and VisualBERT tend to ex-
hibit the strongest brain alignment across all brain areas. Con-
sidering VLM families, VL encoders are significantly superior
to contrastive VLMs in the LH —but not the RH— language
network and in the visual one, and to generative VLMs in the
LH language network. Lastly, VL encoders consistently out-
perform their language-only counterpart (BERT).

In the picture condition (Figure 1, right), we observe higher
correlations than in the sentence condition, which can be
attributed to higher signal-to-noise ratio (i.e., higher inter-
participant similarities) in the fMRI responses. VLMs are sig-
nificantly more brain-aligned than their unimodal counterparts
across all brain networks in this condition.

Ablation Studies

To complement the findings provided by RSA, we conduct two
ablation analyses aimed at answering the following questions.

1) How much of the VLMs’ brain alignment in the sentence
condition can be attributed to semantic information al-
ready present in their language encoder prior to any mul-
timodal training? To investigate this question, we conduct a
partial correlation analysis aimed at removing from VLMs’ rep-
resentational spaces the information shared with LLMs’ repre-
sentational spaces. We highlight two findings: First, in the LH
language network, all differences between partial and initial
correlations, except for IDEFICS2, are not statistically signif-
icant, suggesting that the brain alignment achieved by these
models is mainly attributable to semantic information acquired

during multimodal pretraining. Second, results from the vi-
sual network reveal that, for generative VLMs, the differences
between initial and partial correlations are statistically signifi-
cant, while, for VL encoders, they are not. This suggests that
part of the information relevant for alignment with visual brain
responses was already present in Mistral and Llama3 before
any vision-language training.

2) To what extent is the VLMs’ advantage over their
language-only counterparts in the picture condition
driven by the input images at inference time? We ad-
dress this issue with an ablation study where we pass the
same input (concepts without pictures) to both VLMs and
language-only models. We find that, despite changes in
model rankings, the most brain-aligned architectures in all
brain networks remain multimodal. More specifically, LXMERT
is statistically significantly more brain-aligned than other mod-
els across all three networks, and VisualBERT statistically sig-
nificantly outperforms all language-only models in the LH lan-
guage network and in the visual one. In summary, while some
architectures rely heavily on the input images, others yield
strong brain correlations even without meaningful visual input.

Conclusion
Our study advances our understanding of the brain-relevant
conceptual information learnt by multimodal and unimodal
models and makes the following contributions: 1) It provides
a broad investigation of the brain alignment achieved by mul-
tiple recent pretrained vision-language models from different
model families; 2) It shows evidence that the highest brain
alignment is consistently achieved by one of the VLMs (and
not a language-only model), although not the same architec-
ture across all conditions and brain networks; 3) It reveals that
vision-language encoders tend to exhibit higher brain align-
ment than the more recent generative VLMs; 4) It demon-
strates that the superior brain alignment achieved by vision-
language encoders stems from learning novel multimodal se-
mantic information.
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