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Abstract 

Navigation is a complex goal-directed behavior 

that relies heavily on sensory processing. A key 

center is the hippocampal formation, where well-

known ‘place cells’ and ‘grid-cells’ encode the 

animal’s position. Correlations with spatial 

position have also been found in other brain 

regions, including retrosplenial, visual, and even 

olfactory cortex. However, spatial processes are 

often not distinguishable from sensory, motor, 

and reward processes. To distinguish the 

contribution of different processes to the spiking 

activity of individual neurons distributed across 

the brain, we use an experimentally controllable 

virtual reality corridor, Neuropixels recordings, 

and reduced-rank ridge regression. We find that 

indeed, spatial, but also sensory, motor, and 

reward processes, are distributed widely across 

the brain.  
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Introduction 

Spatial navigation is a complex behavior that depends 

on multiple processes, such as spatial (i.e. cognitive 

map), sensory, reward, and motor coding. Despite 

this complexity, research has primarily focused on 

key regions such as the hippocampal formation, 

where well-known ‘place cells’ and ‘grid-cells’ encode 

the animal’s position (Moser et al., 2008; O’Keefe & 

Dostrovsky, 1971). 

Even in the hippocampus, neurons’ spatial 

encoding relates to sensory landmarks (Gothard et 

al., 1996; O’Keefe & Burgess, 1996), hence 

disentangling the different processes is essential for 

correctly interpreting navigation-related information.  

Using a virtual reality (VR) corridor with two visually 

identical halves, responses to landmarks in the visual 

cortex were discovered to be spatially modulated 

(Diamanti et al., 2021; Saleem et al., 2018). Spatial 

coding was additionally found in retrosplenial, 

posterior parietal, and olfactory cortex (Chen et al., 

1994; Krumin et al., 2018; Mao et al., 2017; Poo et al., 

2022). 

Building on this foundational work, we ask to what 

extent spatial navigation engages a distributed 

representation of different cognitive processes. We 

use Neuropixels probes to record from populations of 

neurons in different brain regions in an adapted 

version of the VR corridor, allowing us to distinguish 

spatial from sensory, reward, and motor coding. Our 

unbiased approach shows that indeed, navigation-

related processes such as sensation, motion, reward, 

and spatial position, are widely distributed. 

Figure 1: virtual linear corridor with two sensory 

identical halves (A and B repeat), a probabilistic 

reward, and a variable ITI with a grey screen after 

reaching 100cm. 

Methods 

We used Neuropixels probes to record in mice 

navigating a virtual linear corridor, recording 15,694 

well-isolated neurons (66 insertions in 24 mice) from 

regions including visual, somatosensory, 

retrosplenial, and motor cortex, the hippocampal 

formation, the dorsal thalamus, striatum, and 

midbrain. On each trial mice traversed a corridor 

consisting of two sensory-identical halves (Figure 1). 

The gain of the running wheel varied across trials to 

decouple physical and virtual position. Contrast of 

visual and loudness of auditory landmarks also varied 

to distinguish sensory and spatial signals. 

We predicted each neuron’s activity using reduced-

rank ridge regression (4R) (Izenman, 1975; Steinmetz 

et al., 2019), summing predictors such as a “place 

field” (generic function of position, within or across 

halves of the corridor) with temporal kernels for 

sensory stimuli, reward, and running speed.  

Figure 2: Reduced-rank ridge regression for example 

neuron. A. Average ± s.e. (spikes/s) activity across 

spatial position. Real data in black, prediction from the 

full-model (cross-validated) in red. B. Real data 

divided for different average running speed 

percentiles (across trials). C. Same as in (B) for 

different visual contrasts. D. 𝑅𝑠ℎ𝑖𝑓𝑡
2  distributions (in 

grey) for running speed, the interaction of position and 

running speed (see also B), contrast (see also C), and 

audio. The red line indicates 𝑅𝑒
2 of the full model. *, 

p<0.05; **, p<0.01.  

We computed 𝑅𝑒
2 (fraction of explainable variance 

explained) on the full-model based on the cross-

validated prediction versus real data (Figure 2A). To 

test for differences across areas, while controlling for 

mouse and session identity, we applied mixed-effects 



models. Post-hoc pair-wise comparisons were Holm-

Bonferroni corrected.  

Next, we circularly shifted one of the predictors (e.g. 

all temporal kernels for predictor ‘running speed’) at a 

time by a random amount of time points (keeping trials 

intact) for 500 times, building a distribution of 𝑅𝑠ℎ𝑖𝑓𝑡
2  

values (Figure 2D). We computed a p-value for each 

predictor’s contribution as the probability for 

observing 𝑅𝑒
2 in this distribution (note that the 

maximum p-value depends on the number of shifts). 

To test whether the number of significant neurons 

per predictor was larger than expected by chance, we 

performed Holm-Bonferroni corrected binomial tests 

(Figure 3B-E). To test whether strength of sensory 

tuning during passive presentation, such as receptive 

field and frequency tuning to visual and auditory 

stimuli, could explain responses in the VR corridor, we 

applied logistic regression.  

 Results 

Our full model was able to explain the responses of 

62.54 ± 12.0% (mean ± s.t.d. across areas) neurons 

with more than 1% of their total explainable variance, 

with a lower bound of 36.75% in the dorsal auditory 

cortex, and an upper bound of 83.72% in the ventral 

posterior complex of the thalamus. In general, 

neurons from different areas had significantly different 

𝑅𝑒
2 values (F31,17266=7.67, p<10-32, mixed-effects 

model, Figure 3A). Specifically visual, auditory, 

primary motor, hippocampal, striatal, and thalamic 

regions had higher 𝑅𝑒
2 values than retrosplenial, 

secondary motor, and anterior cingulate cortex.  

Non-spatial predictors increased explainable 

variance explained significantly. For example, running 

speed significantly increased 𝑅𝑒
2 in 50.5 ± 14.6% of 

neurons across areas, and this percentage was 

higher than chance in all tested areas (all p<0.001) 

(Figure 3B). Reward significantly increased 𝑅𝑒
2 in 

16.2 ± 8.4% of neurons, which was higher than 

chance in some visual, sensory, motor, hippocampal, 

striatal, and thalamic regions (Figure 3C). Sensory 

position significantly increased 𝑅𝑒
2 in 10.1 ± 4.8% of 

neurons, and this percentage was higher than chance 

in most visual and hippocampal regions, dorsal 

retrosplenial, primary motor, and some thalamic 

regions (Figure 3D). 

Nevertheless, spatial predictors (i.e. position x half 

of the corridor) also significantly increased 𝑅𝑒
2 in 12.8 

± 6.7% of neurons, and this percentage was higher 

than chance in anterior, primary, and posteromedial 

visual cortex, lower-limb related primary 

somatosensory, retrosplenial, and motor cortex, 

some thalamic regions, and hippocampal regions 

Figure 3E). In many regions, neurons that increased 

𝑅𝑒
2 for either sensory or subjective position, were more 

likely to increase 𝑅𝑒
2 for both. 

Finally, we tested whether neurons with tuning to 

visual and auditory stimuli outside the VR, were more 

likely to encode certain predictors in the VR corridor. 

Indeed, the strength of auditory and visual frequency 

tuning significantly correlated with an increase in 𝑅𝑒
2 

for spatial predictors (i.e. position x half).  

Figure 3: 4R results. A. total explainable variance 

explained for every neuron, sorted by area (Allen 

Brain atlas nomenclature and color scheme). Note 

that 𝑅𝑒
2<0 indicates the mean firing rate is a better 

predictor than the model. B. percentage of neurons 

per area with significant increase in 𝑅𝑒
2 for running 

speed. ***,p<0.001. C-E. Same as (B) for reward, 

sensory position, and position x half. *, p<0.05 

Discussion 

Our results show that spatial navigation indeed 

engages distributed representations of both spatial 

and non-spatial processes. In line with the literature, 

about 15% of neurons in hippocampal regions 

significantly encode spatial position. Additionally, 

hippocampal neurons encode non-spatial predictors, 

such as running speed, reward, and sensory position. 

With our brain-wide Neuropixels recording 

approach, we find that many regions outside the 

hippocampus, including striatal and thalamic regions, 

also encode spatial position. Interestingly, many 

neurons show mixed selectivity to both sensory and 

spatial predictors in the VR corridor. In line with this 

finding, spatial tuning in the VR corridor correlates 

with the strength of tuning to sensory stimuli outside 

of the VR corridor. These findings suggest that, as 

was previously suggested for the hippocampus, 

spatial tuning is anchored to sensory landmarks 

across the brain. Moving forward we will integrate 

single-neuron and population analyses, and leverage 

chronic Neuropixels recordings to track evolving 

distributed navigation-related signals over time 

(Bimbard et al., 2025; van Beest et al., 2025). 
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