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Abstract
Identifying distinct neural dynamics corresponding to
cognitive states and their transitions is crucial for under-
standing the neural machinery of cognitive functions in
both biological and artificial intelligent systems. How-
ever, conventional methods for state identification con-
strain the analysis by relying on predefined state labels.
Here, we introduce a novel unsupervised approach to ro-
bustly detect behaviorally-relevant state transitions with-
out prior assumptions or knowledge about behavioral la-
bels. We assume that each state has a characteristic dy-
namics within each state (with minimal variation), but trig-
gered by behavioral demands, transitions to other states
(with different characteristic dynamics). Therefore, com-
paring neural dynamics across time, should provide us
key information about state transitions. Based on this
idea, we developed Moving Window Dynamical Similar-
ity Analysis (MoDSA) for an unbiased detection of state
transitions in neural systems. We validated our method
on biological neural data recorded from macaque area V4
during selective attention tasks, and data from diverse
recurrent neural networks trained on context-dependent
decision-making tasks. We demonstrate that our method
can identify behaviorally meaningful states purely based
on neural dynamics, in both domains of artificial and bio-
logical neural systems.

Keywords: brain state, neural dynamics, dynamical similarity
analysis, recurrent neural network, brain-behavior embedding

State in biological and artificial neural systems
A state in cognitive neural systems, whether biological or ar-
tificial, should be defined based on neural dynamics that in-
forms about the behavior. The state can be a characteristic
and sufficiently stable neural activity that dynamically changes
over time depending on the behavioral demands. Such state
transitions are shaped by internal factors (e.g., attention,
Flavell et al., 2022) and/or environmental input (e.g., task
cues, Gonzalez-Castillo & Bandettini, 2018). Despite the sig-
nificance of identifying these behaviorally relevant and distinct
dynamical states in an unsupervised manner, this remains a
challenge for the analysis of data from both artificial and bio-
logical neural networks. Thus, we develop an unsupervised
approach for identifying behaviorally relevant states, purely
based on network dynamics without behavioral labels.

Identifying states through temporal evolutions
We assume each state has a stable characteristic neural dy-
namics for distinct behavioral phases (Figure 1a); thus, neu-
ral dynamics within each state vary minimally, but across dif-
ferent states vary drastically. Therefore, comparing neural
dynamics across time should provide us with key informa-
tion about state transitions. Based on this idea, we devel-
oped Moving Window Dynamical Similarity Analysis (MoDSA)
for an unbiased detection of state transitions in neural sys-
tems. MoDSA extends Dynamical Similarity Analysis (DSA,

Ostrow et al., 2023), a method that compares the dynamics of
two networks by embedding them into high-dimensional linear
systems, capturing essential features of original nonlinear dy-
namics. Unlike fixed-point analyses, DSA evaluates global dy-
namic structures, efficiently identifying similarities despite dif-
fering geometries or inapplicable perturbations. Importantly,
DSA utilizes Procrustes analysis to quantify vector field sim-
ilarity. To improve efficiency, we introduce fastDSA, an opti-
mized variant of DSA.
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Figure 1: (a) Activity of individual neurons of an RNN perform-
ing a contextual decision-making task. Color shades indicate
different behavioral phases (fixation, processing stimulus, de-
lay, and decision). (b) Two example windows (noted in (a))
undergo processing by fastDSA, where dynamics in each win-
dow are first represented by linear models. φ indicates SVD on
the delay embedding matrix. These linear systems are then
quantitatively compared using Procrustes analysis to evalu-
ate their dynamical similarity (further detailed in the text). (c)
MoDSA systematically compares all pairs of windows (sliding
through the entire length of neural activity), generating a com-
prehensive distance matrix. Averaging this matrix column-
wise yields a scoreline that reflects dynamical similarity across
the time course. (d) Democratic Peak Detection (DPD) then
processes the scoreline, calculating (based on TDA) the state
transition probability in an unsupervised manner.

FastDSA enhances DSA efficiency through two innova-
tions: First Automatic optimal rank determination via Optimal
Singular Value Hard Thresholding (SVHT, Gavish & Donoho,
2014), minimizing computational overhead without sacrificing
essential information on the dynamics. On the next step, a
hybrid similarity transformation approach, optimizing orthog-
onality constraints through regularized gradient descent fol-
lowed by a singular value decomposition-based orthogonality
enforcement step. Specifically, we minimize the regularized



loss function (λ stands for penalty term, also see, Figure 1b):

L(C) = |A−CBCT |2F +λ|CTC− I|2F , (1)

and iteratively update the transformation matrix C using gradi-
ent descent:

C(t+1) =C(t)−η
[
−4(A−CBCT )BC+4λ(CCTC−C)

]
.
(2)

MoDSA employs a moving-window approach, repeatedly
calculating fastDSA across pairs of time windows (Figure 1c).
The size of the window is automatically detected as the small-
est window that can capture meaningful dynamics. For win-
dows within each state, neural dynamics will remain similar
(thus small distances based on DSA) whereas transitions sig-
nificantly increase this metric (Figure 1d, top, aligned with Fig-
ure 1a). These scoreline reflect a form of state transition prob-
ability.

To identify when the network elicits a state transition (peaks
in the scorelines, see Figure 1d), we developed Democratic
Peak Detection (DPD) to robustly capture peaks in an un-
supervised manner. To this end, we apply Topological Data
Analysis (TDA) to extract robust, noise-insensitive topologi-
cal features from the scoreline data (Figure 1d bottom). Per-
sistent homology, a fundamental TDA method, captures how
topological features emerge and vanish across varying scales,
through a process called filtration. Intuitively, persistent ho-
mology is like watching a landscape slowly flood. Small pud-
dles (features) appear at first (birth), and as water rises, some
merge or vanish (death). The longer a feature lasts before
disappearing, its persistence, the more meaningful it is. Thus,
we transform the extracted topological features into a geomet-
ric framework within the Birth-Death coordinate system. It has
been shown that in this topological coordinate system, data
points away from the diagonal are the peaks of time-series
(Bois et al., 2024). To identify off-diagonal data points ro-
bustly and objectively, we employ an ensemble learning strat-
egy comprising 13 distinct unsupervised outlier detection al-
gorithms (Zhao et al., 2019, and references therein). The re-
sults of these algorithms are aggregated through a voting pro-
cedure, assigning each point a probability reflecting its likeli-
hood as a genuine peak (Figure 1d top, numbers reflect the
votes). This democratic approach ensures robust, reliable,
and domain-agnostic identification of dynamical state transi-
tions.

Behaviorally-relevant state identification
We validated our method for identifying state transitions us-
ing biological data recorded from macaque monkeys and data
from various recurrent neural network (RNN) architectures.
For the biological data set, we analyze the spiking data from
area V4 during a selective attention task (Engel et al., 2016;
Zeraati et al., 2023). Monkeys were trained to detect changes
in visual stimuli and report antisaccadic responses. The spik-
ing data was collected using 16-channel linear array elec-
trodes converted into peri-stimulus time histograms. The V4

neural activity was recorded during different phases of the
task, allowing us to examine the state dynamics associated
with the attention and perceptual decision-making processes.

To investigate states in artificial neural networks, we em-
ployed several RNN architectures, including long- and short-
term memory (LSTM) networks, gated recurrent units (GRUs)
and vanilla RNNs. These networks were trained in context-
dependent decision-making (CDM, Mante et al., 2013) tasks
consisting of four distinct phases: fixation, stimulus, delay,
and decision phases. During the stimulus phase, the net-
work simultaneously received input from two sensory modali-
ties (e.g., color and motion). After a delay, the network was
trained to make perceptual decisions based solely on one
modality (e.g., dominant motion direction or dominant color),
ignoring the irrelevant modality.

Our method computes the probability of behaviorally-
relevant state transitions at each time point (the time of the
peaks corresponds to state transition times). As the method
is built based on neural dynamics principles, it is appli-
cable to monkey neural recordings and RNN data. Over-
all, our unsupervised approach demonstrates a robust method
for state identification in both biological and artificial cognitive
systems, highlighting its versatility in exploring the neural dy-
namics underlying complex cognitive processes.
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Figure 2: Application of MoDSA on (a) The hidden layers of an
RNN (with LSTM units) and (b) peri-stimulus time histograms
(PSTH) of V4 neurons. The red dots indicate time points with
high (>%80) probability of state transition.
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