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Abstract
Why do we sometimes miss what’s right in front of us?
Does our sometimes striking inability to notice a “gorilla”
strolling in our midst repudiate the computational sophis-
tication of human vision? Instead of regarding this and
the related phenomena of inattentional blindess (IB) as
a human quirk, here, we posit the opposite: that it is a
signature of several advantageous computational adap-
tations. We realize this hypothesis by developing multi-
granular world models, the first-ever model that reverse-
engineers human IB by precisely capturing the elements
relevant to our goals, while coarsely summarizing the rest
scene.
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Introduction
Computational modeling has revealed multiple impressive
facets of human perception, exhibiting invariance to geometric
transformations (Han, Roig, Geiger, & Poggio, 2020) and effi-
ciently inferring 3D objects (Yildirim, Belledonne, Freiwald, &
Tenenbaum, 2020). However, a large body of behavioral work
(Mack, 2003) highlights a dramatic failure of human vision: we
sometimes miss salient events in the world, especially when
we are particularly focused on our goals. This phenomenon of
“inattentional blindness” (IB) is often framed as a human quirk
(Yuille & Liu, 2021).

Here, we reject this hypothesis and instead posit that IB
is a result of sophisticated computation, not yet captured in
computational vision. We hypothesize that IB arises from the
goal-conditioned approximation of multi-granular world mod-
els in the mind, which flexibly and heterogeneously represent
visual scenes, capturing precisely the elements more rele-
vant to goals, while coarsely summarizing the rest. We re-
alize this hypothesis with a computational architecture con-
taining three core components: (1) Multi-granular world mod-
els - a novel class of generative model that supports repre-
sentations at heterogeneous levels of resolution, (2) Adap-
tive computation - a dynamic algorithm to ration perceptual
resources (Belledonne, Butkus, Scholl, & Yildirim, in press),
and (3) Granularity Optimizer - a novel algorithm that adjusts
object resolutions to efficiently satisfy task objectives.

We validate the resulting multi-granular world models in
a case study of sustained IB (Most et al., 2001). In this
paradigm, subjects are often unaware of the presence of an
“invisible gorilla” - an additional object that moves through the
center of the display - when focusing on a goal (counting the
number of times the light objects bounce against the walls of
the display; Fig.1). We recapitulate the primary pattern of hu-
man IB - that the “gorilla” is often missed when it appears sim-
ilar to the task-irrelevant objects, and is often noticed when it
appears similar to the task-relevant objects. Critically, we also
show that this tradeoff is advantageous to performing the pri-
mary task: lesioned model variants significantly deviate from
humans, detecting the gorilla more frequently and as a con-
sequence, under performing in the primary task.

"Gorilla"
(either light 

or dark)

Figure 1: Sustained Inattentional Blindness task based on
Most et al. (2001). Subjects count the number of times the
light objects bounce against the walls of the display. At some
random point, an additional object - the “gorilla”, appearing ei-
ther light or dark - moves through the center of the scene.

Model
Multi-granular world models define a generative model
over how objects move and appear, critically, while also sup-
porting these conditional probabilities at multiple levels of res-
olutions, simultaneously (Fig. 2, left). In the current case
study, object representations take the form of either an indi-
vidual or ensemble, collectively S = {s1, ...,sn}. An individ-
ual object consists of 2D position, instantaneous velocity, and
shade (categorical: light or dark). An ensemble represents
position with a 2D multivariate normal distribution with diago-
nal and constant covariance matrix, 2D velocity, and a mixture
distribution over shade.

Objects move, Pr(St+1 | St), according to a transition kernel
with Brownian dynamics over velocity1. In order to account of
the appearance of the gorilla, a birth-death process (Karlin &
McGregor, 1957) introduces a new object, once, anywhere in
the display with a low probability (0.01).

At given timestep t, objects appear as an unordered set of
detections, X t = {x1, ...,xm}, where xi denotes a noisy “detec-
tion” mask containing 2D location and shade. It’s possible that
an object generates more than one (or none) detections, with
individual objects generally generating a smaller number of
detections in tighter groupings (in terms of location and shade)
than ensembles. Since no inherent mapping of St → X t ex-
ists, the likelihood Pr(X t | St) is defined using random finite
sets (RFS), which marginalizes across all valid mappings (Vo,
Singh, & Doucet, 2005).

In theory, perception could invert this novel generative
model to infer object states given a sequence of detections
Pr(⃗S | X⃗), and decision-making could then use those states to
count bounces Pr(π | S⃗). However, the flexibility of represen-
tation raises a critical question: What level of granularity?.

Adaptive computation We answer this question in two
parts. First, in order to determine what objects are relevant,
we integrate adaptive computation with a perception and de-
cision making model for this case study. Adaptive computa-
tion (Belledonne et al., in press) is a general and dynamic at-
tention algorithm for that rations perceptual computations Ck

1and also covariance in the case of ensembles
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Figure 2: Left: Three distinct granularity schemas for a scene corresponding to three objects. Middle: Visualization of perceived
object states after some period of granularity optimization. When the “gorilla” appears similar to the relevant objects (a light
shade), it’s sensory signal induces the model to generate a new, individual object representation - inducing a noticeable change
in the model’s mental state. When the gorilla instead appears similar to irrelevant objects (a dark shade), the model’s coarse
ensembles “explains away” its sensory signal without generating any new representations. Right: Both multi-granularity and
adaptive computation are necessary to capture human patterns of inattentional blindness. Moreover, lesion models performed
worse at the primary task, while also noticing the gorilla more often.

across objects and moments. It does so according to a task-
relevance measure that bridges how computations readily im-
prove object states δkS and further inform decision-making
δkπ, ∆k = δkπ · δkS. Here, perceptual computations are de-
fined in the context of perception implemented with a particle
filter (Doucet, Freitas, & Gordon, 2001), where a small number
of independent guesses over object states (e.g., 5 particles)
approximate the posterior distribution. Ck corresponds to “re-
juvenation moves” that iteratively improve the object states in
a particle, e.g., Ck(S) → S′ (object ak ∈ S → a′k ∈ S′). Intu-
itively, only the light, individual objects are task-relevant ∆k >
0, since altering their state alone impacts counting δkπ > 0,
especially so as they approach the walls 2.

Granularity Optimization Using the task-relevance across
the representations ∆⃗ for a given granularity schema G (e.g.,
Fig. 2, left), we can determine the efficiency of the schema

with ℧G = ∥⃗∆∥2
|⃗∆|

. To build an intuition in the current domain, the

schema where all dark objects are one ensemble and light ob-
jects are individuals maximizes ℧G, as the dark objects have
∆k ≈ 0. Interestingly, this schema (Fig. 2, middle) would lead
to drastically different perceptual inferences over the presence
of the “gorilla”, as a dark gorilla’s detections would be “ex-
plained” away by the dark ensemble, but for the light gorilla,
generating a new object (the birth kernel) is more probable.

In order for the model to refine granularity on-the-fly, we
implement a hierarchical particle filter (Yang, Duraiswami, &
Davis, 2005), where each hyper-particle is itself a particle fil-
ter entertaining a granularity schema. Periodically3, the algo-
rithm estimates ℧G for each schema, and culls the weaker
schemas. The surviving hyper-particles then “mutate”, ei-
ther refining (splitting) relevant representations or coarsen-

2generally δkS > 0, unless an object has been repeatedly at-
tended to

3after several observations

ing (merging) irrelevant representations to yield an altered
schema for the next period. This process naturally yields more
perceptually tractable coarse representations while ensuring
that task-relevant details are preserved.

Results and Discussion

Across 20 trials following the procedure from Most et al.
(2001), we evaluated the full model as well as two lesion mod-
els matched in terms of overall Ck: (1) fixed-granularity with
all individual objects and adaptive computation, and (2) fixed-
resource same as before but without adaptive computation4.
Each model was evaluated with 10 independent runs per trial,
and initialized to represent all object’s initial positions with in-
dividual representations. For each run, we considered the
model aware of the gorilla if it had tracked the gorillas de-
tections using an individual object representation with above
50% confidence5 for at least 6 frames.

Only the model with goal-conditioned multi-granular world
models captured human IB patterns, almost never generating
an individual object to track detections arising from the gorilla
when it matched task irrelevant objects, while almost always
doing so when the gorilla appeared similar to task relevant
objects (Fig. 2, right). In contrast, the lesion variants almost
always detected the gorilla in both conditions, and critically,
performed substantially worse at the primary task. Thus, this
case study shows that multi-granular world models provides
the first-ever model of human IB while also illustrating the util-
ity of such sophisticated computations. Future work will ex-
plore domains, such as Atari-like games, that more emphat-
ically connect performance with capturing precisely those di-
mensions of the scene that matter most.

4e.g, uniform Ck
5under the RFS marginal
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