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Abstract
In cognitive neuroscience, there has been growing in-
terest in adopting sequential sampling models (SSM) as
the choice function for reinforcement learning (RLSSM),
opening up new avenues for exploring generative pro-
cesses that can jointly account for decision dynamics
within and across trials. To date, such approaches have
been limited by computational tractability, e.g., due to
lack of closed-form likelihoods for the decision process
and expensive trial-by-trial evaluation of complex rein-
forcement learning (RL) processes. We enable hierar-
chical Bayesian parameter estimation for a broad class
of RLSSM models, using Likelihood Approximation Net-
works (LANs) in conjunction with differentiable RL like-
lihoods to leverage fast gradient-based inference meth-
ods including Hamiltonian Monte Carlo or Variational In-
ference (VI). By exploiting the differentiability of RL like-
lihoods, this method improves scalability and enables
faster convergence for complex combinations of RL and
decision processes. To showcase these methodologi-
cal advantages, we consider multiple interacting genera-
tive learning processes with the Reinforcement Learning
- Working Memory (RLWM) task and model. This RLWM
model is then combined with SSMs via LANs. When
combined with hierarchical variational inference, this ap-
proach can accurately recover the posterior parameter
distributions in complex RLSSM paradigms, and more-
over, that in comparison, fitting data with the equivalent
choice only RLWM model yields a biased estimator of the
true generative process.
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Introduction
Reinforcement Learning – Sequential Sampling Models
(RLSSM) are a powerful and expressive class of models that
are naturally suited for computational modeling of cognitive
tasks where the learning process informs the decision-making
process. However, to date empirical data analysis has been
mostly limited to basic instances of RLSSM that employ Drift
Diffusion Models or simple race models and n armed ban-
dits (Pedersen, Frank, & Biele, 2017; Fontanesi, Gluth, Spek-
tor, & Rieskamp, 2019; Miletić et al., 2021). Great theoreti-
cal interest in more elaborate models is established, however
Bayesian parameter inference for such models is hampered
by computational complexity due to a lack of closed-form likeli-
hood for the decision process, a complex reinforcement learn-
ing (RL) process, or a combination of both (Fengler, Bera,
Pedersen, & Frank, 2022).

Here, we show how Variational Inference (VI) methods
(Blei, Kucukelbir, & McAuliffe, 2017; Jordan, Ghahramani,
Jaakkola, & Saul, 1998; Liu & Wang, 2016) in combination
with LANs and differentiable complex RL dynamics, can be
leveraged for computationally efficient and scalable Bayesian

inference treatment of a broad class of RLSSM models. While
we focus on a specific example, and link to empirical findings
of independent interest, we stress that the methods explored
are much more generally applicable. Using empirical and
synthetic datasets of a widely used cognitive task, the Rein-
forcement Learning - Working Memory (RLWM) task (Collins
& Frank, 2012), we show that this approach can yield fast,
tractable inference with a high-dimensional model (D = 10
for each participant, with ∼ 900 free model parameters) on a
large dataset (> 31k trials) in hierarchical settings to recover
the posterior distribution over parameters accurately.

Method

Participants: All participants were recruited from five differ-
ent US locations as part of the Cognitive Neuroscience Test
Reliability and Computational Applications for Schizophrenia
Consortium (CNTRaCS). For this study, we model the behav-
ioral data from the control group (n=87) to experiment with and
refine the methodological advances proposed in this work.

Reinforcement Learning Working Memory (RLWM) task
and model: The RLWM task (Collins & Frank, 2012; Collins,
Brown, Gold, Waltz, & Frank, 2014; McDougle & Collins,
2021) is designed to disentangle the contributions of rein-
forcement learning and working memory (WM) to stimulus-
response learning. Participants learn stimulus-response as-
sociations through trial-and-error feedback in a 3-alternative
forced-choice paradigm. In addition to incremental RL, the
task systematically varies WM demands by manipulating the
set size (the number of unique stimuli, ranging from 2 to 5 per
block) and delay (the number of trials before re-encountering
a stimulus). Participants complete 10 training blocks for 360
trials total. We compare two computational models that are
slight variants of existing RLWM models – RLWM with Soft-
max decision process (choice-only model) and RLWM with
collapsing bound Linear Ballistic Accumulator (LBA-Angle)
decision process (choice and reaction time model). We refer
the reader to the cited papers for details about computational
modeling. Since RTs show systematic effects of WM load, the
inclusion of RTs in modeling could constrain and help interpret
the generative RL and decision process.

Variational Inference: VI approximates the posterior by
optimizing a parameterized family of distributions to minimize
divergence from the true posterior. The combination of differ-
entiable surrogate likelihoods via LANs and differentiable RL
implementation allows computation of evidence lower bound
(ELBO) gradients with respect to variational parameters, en-
abling efficient updates via gradient-based methods for VI. In
this work, we used Automatic Differentiation Variational Infer-
ence (ADVI; Kucukelbir, Tran, Ranganath, Gelman, and Blei
(2017)), as implemented in PyMC (Abril-Pla et al., 2023). All
experiments were performed by recovering the parameters hi-
erarchically with the same non-informative priors. The best-fit
run (out of 20 inference runs) as determined by the log prob-
ability of fit was used for all further analysis. The ELBO loss
was monitored for convergence and stability.



The likelihood was implemented in a JAX (Bradbury et al.,
2018) function and wrapped in PyTensor (Developers, 2024)
to interface with PyMC for all autodiff/numerical computations.
We trained a multilayer perceptron with five layers to approxi-
mate the likelihoods of the joint choices and decision dynam-
ics (RT distributions for each of the three choices), as per
the procedures outlined in Fengler, Govindarajan, Chen, and
Frank (2021).

Results

VI significantly boosts the speed of inference: model fits are
achieved in under 60min. Attempting the same analysis with
MCMC, took between one and two orders of magnitude more
time.

RLSSM model captures both choice and RT distri-
butions: Figure 1 (e) shows a comparison of common
participant-level parameters between the RLWM LBA-Angle
model and RLWM Softmax models. The RLWM Softmax over-
estimates the WM reliance parameter (ρ), WM capacity pa-
rameter (C) as well as RL learning rate (α) relative to the
RLWM LBA-Angle model. Indeed, if one simulates RTs from
the LBA-Angle model using the αs estimated by the Soft-
max model, the RTs become progressively faster at a higher
rate than observed empirically (Figure 1 b). In contrast, the
RLSSM jointly models the choice and RT distributions, and
hence, imposes further constraints on identifying the genera-
tive RL parameters separable from WM. Posterior predictive
checks confirmed this interpretation. We generated data us-
ing estimated parameters (sub-sampled by a factor of 50 from
the posterior) and compared the observed and simulated re-
sults. As predicted, the RL-SSM model more appropriately
captures both choice and RT dynamics and moreover, specif-
ically at higher set sizes when RL is more dominant (Figure 1
a-b).

RLSSM model recovers the parameters better than the
RL-only model: We performed parameter recovery (Figure 1
c-d) to further assess whether these differences allow RLSSM
parameters to be more identifiable than the Softmax version.
We simulate a synthetic dataset based on the parameters
that best-fit to our empirical dataset and attempted to recover
the true data-generating parameters. Figure 1 (c) shows that
RLWM LBA-Angle model was able to recover all parameters
with reasonable accuracy, even recovered all common param-
eters significantly better than the RLWM Softmax model (d).
This suggests that the RLWM LBA-Angle is a better generative
model for the empirical data and thus highlighting the potential
of joint models of choice and RT data to improve parameter
identification in cognitive models (Ballard & McClure, 2019).
Importantly, the RLWM Softmax model overestimates WM re-
liance (ρ), WM capacity (C) and, notably, the RL learning rate
(α). The parameter recovery results recapitulate the tendency
of the RLWM Softmax model to overestimate certain param-
eters (Figure 1 e). The choice-only Softmax model can give
biased estimates of the model parameters especially when
the RT distributions are informative of the underlying cognitive

processes. Our results highlight the ease by which we may be
lead astray concerning the generative mechanisms underlying
our data, if we do not take into account all information present
in our dataset (RTs and choices). The combination of meth-
ods we illustrate here, allows a broad class of RLSSM models
to be tested on large scale experimental datasets, and hence
to properly exploit the availability of RT data where traditionally
computational considerations imposed hard limits.

Figure 1: Posterior predictive checks for (a) accuracy and (b)
reaction times grouped by set size (ns). The solid lines indi-
cate mean across participants and simulations. The shaded
region corresponds to 94% HDI ranges. Parameter recov-
ery results with (c) RLWM LBA-Angle and (d) RLWM Softmax
model. (e) Comparison of common participant-level parame-
ters recovered between RLWM LBA-Angle and RLWM Soft-
max models. The error bars indicate 94% HDI range.
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