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Abstract
In fMRI analysis, neural encoding models reveal how in-
dividual voxels respond as a function of continuous stim-
ulus parameters, and how response function parameters
change within and between brain areas. Conversely, rep-
resentational similarity analysis reveals structure in the
responses of a region of interest (ROI) to any stimuli.
Here we develop representational tuning models to unite
these approaches. These response models first rescale
the representational dissimilarity matrix (for an ROI) to a
2-dimensional representational space then find (for each
voxel) the Gaussian function within this 2D space that
best predicts the voxel’s response to all stimuli. By de-
riving continuous response function parameters from the
ROI’s responses, this approach requires no a priori hy-
pothesis of stimulus parameters underlying the response
function. It thereby allows application of neural encoding
models to arbitrary stimulus sets. We test this approach
for responses from the Natural Scenes Dataset within 12
visual field maps. We show that representational tuning
models significantly predict voxels’ responses to natural
images in higher-level (but not early) visual field maps,
especially when sampling from other visual field maps,
and we demonstrate that the principal components of rep-
resentational spaces reflect the spatial structure of re-
sponses across the cortical surface within an ROI.
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Introduction
Parametric neural population encoding models (Dumoulin &
Wandell, 2008b; Kay et al., 2008) are widely used to char-
acterize the response functions of individual fMRI voxels and
how these change within and between brain areas. These de-
scribe a response function of a continuous stimulus parameter
like visual field position (Harvey & Dumoulin, 2011), auditory
frequency (Thomas et al., 2015), numerosity (Harvey et al.,
2013) or event timing (Harvey et al., 2020; Hendrikx et al.,
2022). But many stimuli, like objects, differ in complex high-
dimensional ways. This makes it difficult to determine which
stimulus parameter(s) the neural response function follows.
Here, representational similarity analysis (RSA) (Kriegeskorte
et al., 2008) is widely used to analyze the relationships be-
tween patterns of responses to different stimuli. As RSA uses
response patterns of larger brain areas, it does not character-
ize responses of individual voxels, or how these change within
and between brain areas.

Multidimensional scaling of representational dissimilarity
matrices (RDMs) (Figure 1A) makes response pattern differ-
ences more interpretable by projecting them to distances in
a two-dimensional (2D) space (Figure 1B). Here we hypothe-
sized that a single voxel’s response to arbitrary stimuli could
be described by a parametric function in the 2D representa-
tional space (Figure 1C) of the brain area the voxel lies in. We
further hypothesized that, for fMRI data, the two dimensions

recovered by multidimensional scaling (i.e. principal coordi-
nates) may, in part, follow the structure of the cortical surface
within the brain area from which the RDM is derived.

Figure 1: Schematic of the representational tuning model. (A) An
RDM describes correlations between responses to arbitrary image

pairs in a brain area. (B) This undergoes multidimensional scaling to
give a 2D representational space. (C) For each voxel in the brain
area, we find the Gaussian in this 2D representational space that
best describes the voxel’s response amplitude to all images. The
Gaussian center is the voxel’s preferred position in the 2D space

Methods
We used of the Natural Scenes Dataset (Allen et al., 2022),
7T fMRI responses to between 7,000 and 10,000 images per
participant, each presented at most 3 times. This includes
the response amplitude (beta) of every voxel’s response to
every image presentation from 8 participants, plus visual field
mapping data.

We used the visual field mapping data to identify visual field
maps in the early visual cortex (V1-3), lateral visual stream
(LO-1&2, TO-1&2) and ventral visual stream (hV4, VO-1&2,
PHC-1&2), our regions of interest (ROIs). These small ROIs
each correspond to one visual image representation.

Subsequent analysis used responses to natural scene im-
ages in the same participants. We first made a training set of
these responses, averaging response amplitudes to the same
image across all but the last presentation of the image. We
used this training set to determine an RDM: the difference
(1-correlation) between the response patterns to every image
pair. We derived a 2D representational space using classical
multi-dimensional scaling, giving each image a position in the
ROI’s 2D representational space.

For each voxel in the ROI, we then fit the isotropic (circular)
Gaussian that best describes the voxel’s response amplitudes
to each image, considering the image’s positions in the 2D
space. We evaluated the model’s fit on an independent test
set: responses to the final single presentation of the same
images. We then tested whether model fits in each visual
field map had a median cross-validated variance explained
(CVVE) significantly above zero.

In each visual field map in each hemisphere, we quanti-
fied the spatial structure of voxels’ fitted preferred represen-
tational tuning position using (Spearman) correlation between
the cortical surface distance between each pair of voxels and
the distance between their preferred representational tuning
position.

We then extended this within-ROI approach by fitting the
response function within the representational space of an ROI



other than that the voxel lay in, a between-ROI model. For
the voxels in each target ROI (whose responses we try to ex-
plain), we selected the source ROI that best fit the training set
responses, then evaluated the resulting model’s predictions
on the test set.

Results

Figure 2 shows how the CVVE of both within-ROI and
between-ROI models across Subject 1’s cortical surface (Fig
2a) and in the average in each visual field maps across all
subjects. The within-ROI model can explain some of the vari-
ance, particularly in anterior, higher-order visual field maps in
the lateral and ventral occipito-temporal cortex (Fig 2b, left). It
predicted response variance significantly above 0 in V1, PHC-
2, LO-2 and TO-1. While CVVE is consistently low (under
0.08 R2) in these areas, it is often around half of the corre-
lation between response amplitudes in the training and test
sets, the noise ceiling. The response functions’ extents also
decreased from posterior to anterior visual field maps, so vox-
els responded to progressively more specific parts of the rep-
resentational space (Fig 2c). Lastly, the distance between the
preferred representation space position of any pair of voxels
was significantly correlated with the cortical surface distance
between these voxels (Fig 3), so the representation tuning
properties changed systematically across the cortical surface
within each ROI.

For the between-ROI models, all ROIs’ average CVVE was
significantly above 0 except in V3, hV4, LO-1 and LO-2, mean-
ing our model can capture variance over most of the visual
system, and can explain more variance in PHC-1, PHC-2, TO-
1 and TO-2.

Figure 2: a The cross-validated variance explained of each voxel on
the cortical surface (for Subject 1). b Comparisons of average

CVV E across both hemispheres and all subjects. The star symbols
indicate where the distribution of CVV E for each ROI is significantly

above zero (∗p < 0.05,∗∗ p < 0.01). The orange bars are the
average noise ceiling of each ROI across all subjects.

Figure 3: Average Spearman Correlation coefficients (ρ) between
distances between voxels’ preferred Representational Space

positions and distances on the cortical surface across all subjects.

Discussion
Our results show that individual fMRI voxel’s responses can be
meaningfully described as a sample of the representational
space within the voxel’s brain area or another area, partic-
ularly for higher-order visual areas. This shows that para-
metric encoding models can be used to describe neural re-
sponses for arbitrary sets of stimuli, without needing hypothet-
ical parameters describing the stimulus states. Our between-
ROI model performed better than our within-ROI model, likely
through its more flexible source ROI selection.

Our results also demonstrate that each voxel’s fitted pre-
ferred position varies systematically across the cortical sur-
face within each ROIs. This implies that the two dimensions
obtained by multi-dimensional scaling of RDMs from fMRI
data (i.e. the first two principal coordinates in principal coordi-
nate analysis) reflect the structure of the cortical surface within
the ROI from which the RDM is derived. However, the strength
of correlations between distances on the cortical surface and
representational space do not closely follow the CVVE across
ROIs. Therefore, well-fitting models are not simply capturing
visual field map structure. Likewise, our models’ poor perfor-
mance in early visual field maps suggests they are not simply
picking up the spatial structure of image contrast (Dumoulin
& Wandell, 2008a; Kay et al., 2008), but instead higher-level
object or image properties that drive later responses.

Finally, our results show that this method can also be ap-
plied using the representational space of a different ROI than
the target voxel lies in. This allows us to ask how neural re-
sponses in a voxel can be explained as a sampling of a repre-
sentation space in a distant brain area, much like connective
field modelling (Haak et al., 2013) describes how higher-level
visual spatial responses can be explained as a sample from
an earlier visual field map. This has the potential to reveal re-
lationships between stimulus representations in different brain
areas.
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