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Abstract

Humans need to make accurate and timely decisions
based on constant influx of noisy sensory signals. They
should integrate signals from common causes, but seg-
regate those from separate causes. Previous research
has shown that the brain arbitrates between integration
and segregation consistent with Bayesian Causal Infer-
ence models (BCI). However, these static models ignored
the dynamics of perceptual decision making and there-
fore could not account for response times. Using psy-
chophysics, we show that the influence of spatially dis-
parate visual signals on observers’ perceived sound loca-
tion declines with longer response times. This pattern is
best captured by a dynamic BCI model that accumulates
evidence jointly about the signals’ locations and their
causal structure (i.e. common vs. independent causes)
over time in a forgetful fashion, until a decisional thresh-
old is reached. By accounting for both response choices
and times these dynamic BCI models advance our under-
standing of how observers dynamically combine signals
from multiple sensory modalities in the face of causal un-
certainty. They provide a novel perspective on previous
neuroimaging results showing a progression from fusion
to BCI multisensory interactions along cortical pathways.
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Introduction

In our natural environment observers need to make accurate
and timely decisions based on a constant influx of noisy sig-
nals. A wealth of work in unisensory perception has shown
that observers accumulate multiple sensory samples until a
decisional threshold is reached consistent with normative se-
quential sampling models (Gold & Shadlen, 2007). Further,
observers have been shown to integrate sensory signals from
common causes weighted by their momentary reliabilities and
accumulate this integrated evidence over time (Drugowitsch
et al., 2014). However, in natural environment observers do
not a priori know whether signals come from common sources
and should hence be integrated. They need to infer the sig-
nals’ causal structure from noisy cross-sensory correspon-
dence cues such as signals happening at the same time or
location (Körding et al., 2007; Noppeney, 2021). In the face of
this causal uncertainty observers need to concurrently accu-
mulate evidence about environmental properties such as an
object’s location and the signals’ causal structure leading to
complex non-linearities in the decision process.

This study combines psychophysics in human observers
and Bayesian modelling to investigate how the brain accumu-
lates evidence about the location of brief (50 ms) and long
(until response with a maximum of 2000 ms) stimuli from au-
ditory and visual senses under causal uncertainty into timely
and accurate perceptual decisions.

Methods
Experimental procedure
In a spatial ventriloquist paradigm 6 observers were pre-
sented with synchronous, spatially congruent and disparate
audiovisual signals, sampled independently from 4 equally
spaced locations, ranging from −10.5◦ to 10.5◦ along the
azimuth (stimulus duration: 50 ms or until response with a
maximum of 2000 ms). In blocks observers reported either
their perceived A or V location via 4-alternative keypress.

Generative and Recognition models
We built two dynamic Bayesian Causal Inference models
(figure 1A, 1B). Each BCI model assumed that common
and independent causal structures (C=1 or C=2) are sam-
pled from a binomial distribution, defined by a causal prior
pcommon (Körding et al., 2007). In the evidence accumula-
tion model, A and V stimulus locations (sAt ,sVt ) are con-
stant, sampled jointly (C=1) or independently (C=2) from
a spatial prior distribution N(µp,σp). In the forgetfulness
model, (sAt ,sVt ) follow a joint or two independent random
walks (e.g. sAt N(sAt−1,σ

2
noise) . On each trial, these stim-

ulus locations generate a series of conditionally independent
noisy sensory observations (xA≤t ,xV≤t). Given these noisy
observations, the observer computes the posterior distribu-
tion over the causal structure C and the A location (simi-
larly for V location)(Yu et al., 2009): P(sA,C|xA≤t ,xV≤t) =

P(xAt ,xVt |sA,C)P(sA,C|xA≤t−1,xV≤t−1)

∑
C

∫
P(xAt ,xVt |sA,C)P(sA,C|xA≤t−1,xV≤t−1)dsA

Observers’ spatial responses are obtained:
P(sA|xA≤t ,xV≤t)=∑C P(sA|C,xA≤t ,xV≤t)P(C|xA≤t ,xV≤t)

with:
P(sA|C = 1,xA≤t ,xV≤t) = N

(
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)
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P(sA|C = 2,xA≤t ,xV≤t) = N
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)
In the evidence accumulation model, the mean and vari-

ance are recursively updated:
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In the forgetfulness model, the posteriors are perturbed by
process noise σ2

AV,t = σ2
AV,t−1 +σ2

noise.

Model Responses
The observers decide whether to respond or continue sam-
pling on the basis of the rate of change of either the maximum
value, or the normalised Shannon entropy of the evolving pos-
terior distribution(Li & Ma, 2020). They report the mean or the
MAP of the evolving posterior distribution as the final A or V
location estimate (ŝA or ŝV ) (figure 1B). The continuous loca-
tion read outs are mapped onto the closest button responses
for comparison with observers’ discrete response data.



Figure 1: (A.) The generative model for dynamic Bayesian causal inference, and (B.) for the forgetfulness Bayesian Causal
Inference model. The crossmodal bias for participant responses (continuous line) and the responses for evidence accumulation
model (dotted line) and the forgetfulness model (dashed line) for the brief stimuli (C.), and the long stimuli (D.).

Results
Behaviour
The crossmodal bias (CMB) (e.g. for A report:
(AreportsA=x,sV=y − AreportsA=sV=y) quantifies the in-
fluence of the task-irrelevant sensory (e.g. visual) signal on
observers’ (e.g. auditory) spatial report. CMB decreases with
i. spatial disparity and ii. response times for both brief and
long stimuli (figure 1C, 1D).

Modelling
Both dynamic BCI models account for observers’ CMB profile
across RT and disparity by spatial uncertainty principles.
Initially, the models face large spatial and hence causal
uncertainty, so that the bimodal posterior and hence the spa-
tial estimate resembles a vision-dominated fusion estimate.

Figure 2: Simulated evolving posteriors, and MAP readout for
both the evidence accumulation (top), and the forgetfulness
model (bottom), based on noisy observations (xA≤t ,xV≤t ).

With increasing number of samples this spatial uncertainty
gradually resolves and the bimodal posterior has more
probability mass over the true auditory location (figure 2).
Thus, the progression from fusion to segregation and hence
the reduction in CMB for longer RT naturally arises from a
reduction in causal uncertainty. Crucially, because of process
noise the forgetfulness model maintains a broader posterior
even for later response times, being able to flexible adapt to
new sensory inputs.
Factorial model comparison at the group level reveals supe-
rior performance of the forgetfulness model for both brief and
long stimuli (Pexp,b = 0.9750, Pexp,l = 0.9749)(Acerbi et al.,
2018).

Discussion

Previous static Bayesian Causal Inference models explained
how the brain arbitrates between sensory integration and seg-
regation(Körding et al., 2007). By ignoring the dynamics of
perceptual decision making they provided predictions only for
response choices but not for response times. Dynamic BCI
can explain how observers’ response choices and crossmodal
biases depend on their response times. Accumulating sen-
sory evidence about the signals’ locations progressively re-
solves observers’ spatial uncertainty, and thereby their un-
certainty about the signals’ causal structure. This decline
in causal uncertainty in turn reduces the influence of task-
irrelevant spatially disparate inputs from other sensory modal-
ities. Further, even though the true stimulus locations are con-
stant within a trial, observers accumulated evidence in a for-
getful fashion, i.e. using a strategy that is optimal in a dynamic
world with time-varying stimulus locations. From a neural per-
spective, dynamic BCI can also explain the progression from
earlier sensory fusion estimates in posterior parietal cortices
to Bayesian Causal inference estimates in anterior parietal
cortices (Aller & Noppeney, 2019; Rohe et al., 2019; Cao et
al., 2019).
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