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Abstract

Perception is a highly active process; therefore, it can
and should be approached from a decision-theoretic per-
spective. Elevating perception from a mere sensory infer-
ence to a decision process requires us to consider, for in-
stance, how the value of sensory objects influences what
we perceive and how the task at hand affects our percep-
tion. Here, we suggest that multistable perception could
be a suitable candidate to study task-modulated percep-
tion in both humans and animals. Multistable perception
is the dynamical alternation that arises when a single sen-
sory input has more than one interpretation or explana-
tion. Multistable perception is one of the most venerable
perceptual phenomena that has been formalized as a de-
cision process. We extend the previous model of percep-
tual multistability (Safavi & Dayan, 2022, 2024) by incor-
porating a richer state space and action repertoire for a
reinforcement learning agent, and we show that this al-
lows us to explain the established task-modulated per-
ception during perceptual multistability. Our model repli-
cates and explains recent findings on the modulation of
perception by task observed in previous studies (Dieter
et al., 2016). This is achieved by incorporating two key
elements– changes in attentional resource allocation and
representation of the environment volatility– into a rein-
forcement learning paradigm. These changes are imple-
mented in the model by systematically adjusting the ob-
servation and transition functions in our partially observ-
able Markov decision model of perpetual decisions. Over-
all, our findings further support the view that perception
is an active, goal-directed process, aligned with princi-
ples shared by other aspects of cognition.
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Perception is an active process

Perception is an active process that shapes sensory pro-
cessing in response to the demands of the task at hand.
Thus, it must be approached through the lens of reinforcement
learning (RL) and decision-making. Perceptual multistability
– where perception alternates between competing interpreta-
tions despite constant sensory input, as seen in phenomena
like binocular rivalry and Necker cube (Blake & Logothetis,
2002), offers a unique window into studying perception as a
decision process (Safavi & Dayan, 2022).

In this study, we model perceptual multistability based on
the RL framework introduced in previous studies (Safavi &
Dayan, 2022, 2024). This framework conceptualizes percep-
tion as a dynamic value-based decision-making process us-
ing a partially observable Markov decision process (POMDP).
It offers a novel approach to investigate how cognitive factors
(such as attention and reward) affect perception. Here, we
extend Safavi and Dayan (2022, 2024)’s framework to explain
how task demands modulate perception.

A paradigm to study task-modulated perception
In binocular rivalry, each eye is shown a different image (Fig-
ure 1A, top), leading to a perceptual alternation between two
stimuli (Figure 1A, bottom). The duration of dominant percepts
follows a gamma-like distribution (Brascamp et al., 2005), sim-
ilar to other response distributions.

Figure 1: (A) In binocular rivalry (top), participants’ two eyes
see different images; with a percept that switches sponta-
neously (bottom). (B) Two experimental settings in Dieter et
al. (2016).

Dieter et al. (2016) modified the conventional binocular ri-
valry experiment and demonstrated that participants’ percep-
tion is strongly influenced by the task at hand. In their exper-
iment, participants observed pinwheel and bull’s-eye images
as two competing stimuli, each presented independently to
a separate eye (Figure 1B). In one phase of the experiment,
called the rivalry tracking only task, observers were instructed
to report only the dominant image, whether they perceived
the bull’s-eye or the pinwheel. In the other phase, the aspect
ratio task, observers viewed the same images, but the bull’s-
eye image was stretched either horizontally or vertically (see
Figure 1B, shaded in red) and dynamically changed through-
out the task. In this task, observers were required to track
and report changes in the bull’s-eye aspect ratio by pressing
keys. All participants performed both tasks before and after
several training sessions. During training, participants com-
pleted the aspect ratio task across twelve sessions. Dieter
et al. (2016) reported, prolonged dominance duration of the
task-related stimulus (bull’s eye) in the post-training session
(see Figure 3A). To explain why perceptual dominance varied
across tasks before and after training, we developed an RL
model, as described in the following.

A POMDP with task-modulated perception
We extend the previous RL model Safavi and Dayan (2024)
to a richer state space and action repertoire. We expand
the state space from two states to a three-state configuration,
representing distinct perceptual experiences that agents can
have (similar to human participants in the experiment): The
pinwheel, the widened bull’s-eye, and the elongated bull’s-eye
patterns; and assign perceiving each state to an internal ac-
tion (3 internal actions), as well as key presses as external ac-
tions (2 external actions) for behavioral report of widened and
elongated bull’s eye in aspect ratio task (but not in the rivalry
tracking only task as these actions were not involved). The
agent switches between percepts by selecting internal actions



based on the dynamic value of possible percepts and belief
distribution over all possible states.

We implement a dynamic component to observation and
transition functions to incorporate the influence of training on
participants’ behavior. Before training, the model assumes
equal transition probabilities and observation noise for all pos-
sible percpets. However, after training, perceptual states rele-
vant to the aspect-ratio tracking task gain heightened volatility,
which is incorporated by the increase in state transition prob-
ability, specifically between widened and elongated bull’s eye
(capturing their dynamic changing in the aspect-ratio track-
ing task), and reduced observation noise for the task-relevant
stimulus percepts (capturing the elevated attention).

The reward associated with an agent’s perception follows
an exponential decay, which represents how sensory value di-
minishes over time due to cognitive fatigue or boredom (Briel-
mann & Dayan, 2022) as it was also suggested by Safavi and
Dayan (2024). In addition, switching between percepts has
a cost for the agent (agent needs to deconstruct one percept
and reconstruct a new percept), and a constant (small) reward
is given for suppressed percepts (more sophisticated formula-
tion can also be incorporated, see, Safavi & Dayan, 2024).

In particular, our model replicates and explains the change
in the dominance distributions observed in the aspect ratio
tasks before and after the test (observed in Dieter et al., 2016,
also see Figure 3). It also indicates shorter dominance dura-
tions for the task-relevant stimulus in the pre-test and longer,
more sustained dominance in the post-test. Furthermore, the
increased predominance of the task-relevant stimulus in both
tasks aligns with behavioral data averages (Figure 2).

Figure 2: (A) The predominance results reported in Dieter et
al. (2016) and (B) with our model.

This task-modulated behavior can be understood as a con-
sequence of how the brain allocates attentional and cognitive
resources in accordance with the task’s goals/demands and
strategies, incorporating a dynamic observation function that
is shaped by the training, thus, explaining how attentional allo-
cation reduces uncertainty in perceiving task-relevant stimulus
after training sessions. The observer allocates more cognitive
and attention resources, which in the model is represented by
lower observation noise, to the task-relevant stimulus in the
post-tests. Additionally, the update in the transition function
indicates the representation of the environment in the agent’s
representation of the temporal structure of world states, which
is dynamically changing in the aspect ratio task.

The change in the transition function captures the learning
of the environment’s volatility. Alternation between widened

and elongated bull’s eye (task-relevant stimulus) occurs when
the bull’s eye is dominant. As the predominance of task-
relevant stimulus increases in the training sessions, the prob-
ability of transitioning between both percepts enhances. Thus,
the transition function is adjusted (during the training) for the
post-tests in order to capture the volatility of the environment
that the stimulus dynamically changed between widened and
elongated bull’s-eye stimuli.

Figure 3: Percept duration histogram for task-relevant stimulus
in (A) the experiment of Dieter et al. (2016) and (B) our model.

Overall, our model precisely captures the temporal dy-
namics of task-modulated perceptual behavior (both aver-
ages and distributions). The model captures it through learn-
ing the temporal dynamics of the environment incorporated
in the task structure and the strategic allocation of cognitive
resources (attention), which enhances perceptual predomi-
nance for task-relevant stimuli. Crucially, this approach en-
ables us to replicate the shape of perceptual dominance distri-
butions observed in Figure 3 — an aspect that value-free mod-
els struggle to explain as the temporal structure was not incor-
porated in these models (Brascamp et al., 2018), whereas in
POMDPs, transition function explicitly takes that into account.
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