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Abstract
Perceptual decision making is classically conceptualized
as evidence integration theory – the notion that sensory
inputs are perceived by sequentially accumulating noisy
samples from the environment and averaging out the
noise. Modeling with evidence integration has captured
perceptual and neural dynamics elicited by parametric
stimuli in simple tasks, but studies of natural vision re-
veal richer dynamics that remain poorly understood.

In this study, we propose samples in time are not ac-
cumulated from a noisy external environment, but from
internal representations formed through Bayesian infer-
ence where the statistics of sensory inputs are refined
iteratively. Thus, we aim to test if iterative Bayesian infer-
ence determines perceptual dynamics when processing
natural stimuli.

To test this, we focus on natural image segmenta-
tion. We measured human perceptual segmentation us-
ing a recently published experimental design: partici-
pants judged whether pairs of regions in an image were
in the same segment (‘yes’) or not (‘no’). Subjective seg-
mentation maps were reconstructed for each participant
with optimization on ‘yes’/‘no’ responses per pair.

Examining responses where perceived segments were
inconsistent with the segments established by the opti-
mal subjective map, we observed that participants pre-
sented a bias toward responding ‘yes’ when the two re-
gions were close and ‘no’ when far. Furthermore, deci-
sion times increased with distance for ‘yes’ responses,
but decreased with distance for ‘no’ responses, and this
effect was larger for participants with stronger bias.

For further inquiry, we developed image-computable
segmentation models of the classical evidence integra-
tion and iterative Bayesian inference theories. Although
both model types fit aggregate decision-time distribu-
tions similarly well, we found that the spatiotemporal dy-
namics observed in the data were captured only by it-
erative inference incorporating a Bayesian spatial prox-
imity prior. This work highlights the importance of con-
sidering iterative Bayesian computations to understand
human perceptual dynamics when exact inference is in-
tractable, as in most real-life situations.
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Experiments
We follow the design of the segmentation task in (Vacher et al.,
2023) for quantifying aspects of natural image segmentation

Figure 1: Psychophysics task: The participant mentally
partitions the image into k segments during the free-viewing
epoch. Then, segmentation cues are briefly shown super-
imposed on a gray screen (red circles), followed by image
presentation. After image presentation the participants re-
spond “yes” or “no” to whether cues are in the same segment.
We collected a set of responses {R}n to n distinct cues, and
the corresponding decision times {td}n. Participant map: A
segmentation map is computed such that {R}n can be reca-
pitulated with maximum likelihood. Distance dependence
of decision times: Across 11 participants and 12 images
(n = 31,629 pairs) we find that “yes” and “no” response de-
cision times have positive and negative correlations with dis-
tance respectively (also shown in Figure 3c).

in human participants (Fig. 1). Our findings for “yes” response
dynamics are consistent with past work (Jolicoeur et al., 1986;
Korjoukov et al., 2012; Roelfsema, 2023), and current models
(Adeli et al., 2023; Goetschalckx et al., 2023; Veerabadran et
al., 2023), but the aforementioned studies do not present a
framework for understanding the dynamics of “no” responses.

Model

We compare and contrast two image-computable, normative
models of decision making described in Figure 2. One uses
classical evidence integration while the other uses iterative
Bayesian inference.

Let td represent participant decision times and let t̂d repre-
sent the time variable in the model. Model parameters (de-
fined in Fig. 2b,d) are fit across all pairs for each participant
and image by minimizing the negative log-likelihood of observ-
ing the human distribution td under the model distribution t̂d
across all pairs.



Figure 2: Center panel (light blue): The model assigns a
per-segment probability to each image pixel, here we overlay
colors indicating the most likely segment. Across time, both
models converge to the same percept (dashed arrows). (a) In
iterative inference, the low-resolution participant segmentation
map is the initial guess at t = 0 (green square). Segment prob-
abilities are refined by iterative Bayesian inference until time
T when inference cannot improve (Vacher et al., 2022). (b)
In evidence integration, the converged map (large red square)
is perturbed (dashed red squares) by independent noise at
draw-time t ′, η(t ′). Evidence is integrated (represent by Σ)
over T samples. Outer panels (gray): Pink boxes indicate
equations used in transforming pixel probabilities to an evi-
dence space E ∈ (−∞,∞). (c) In iterative inference, E(t = 0)
comes from the initial guess and spatial proximity prior which
allows for distinct E for close pairs (circles) and far pairs (trian-
gles). E may stop when segment probabilities become static
(light blue triangle or red circle). In the cases with highest
certainty, evidence grows monotonically (blue circle, light red
triangle). (d) In iterative inference, mean traces elucidate how
a decision time can be calculated by evaluating when the log-
odds become static (dE/dt → 0), or when reach a fittable
y-axis boundary, i.e. E(t) = b. (e) In evidence integration,
the model computes a drift rate by averaging over converged
evidence for yes/no responses (dashed blue/red lines). The
model drifts from E(t ′ = 0) = 0 as independent noise is added
at each t ′. (f) Mean traces elucidate how a decision time can
be calculated by evaluating when the log-odds reach a fittable
y-axis boundary. Unlike in iterative inference, evidence is ac-
cumulating at a constant rate.

Results and Discussion
Our results show that the iterative inference model fits hu-
man decision time data at least as well as the classical ev-

Figure 3: Results from model fits per participant and image.
(a) Model decision time distributions (black) plotted against
human distributions (red) for each model type, annotated with
the loss (negative log likelihood) per participant per trial. Mean
loss values are not significantly different between models (p>
0.4) (b) Iterative inference model decision times conditioned
on response type and distance (top middle) are qualitatively
more similar to human dynamics than evidence integration
model decision times (bottom middle). (c) Each marker in-
dicates the Spearman correlation between time and distance
for a single participant across all images. In iterative infer-
ence, similarity to human dynamics is evident per-participant
(as well as per-image, not shown). Correlation differences be-
tween yes and no responses in iterative inference are par-
ticularly aligned with human data as shown by the slopes of
dashed lines matching the slope of the green line, regardless
of marker location.

idence integration mode (Fig. 3a). However, only iterative
inference captures the distance dependence of reaction times
(Fig. 3b,c).

In other words, although neither model was trained with
knowledge of the distance between pairs, the iterative
Bayesian inference model captures a human-like distance de-
pendence because of the spatial proximity prior. Ablation ex-
periments (not shown here due to lack of space) indicate that
it is indeed the spatial proximity prior in iterative inference that
is responsible for this effect, and not the human-aided initial
guess or non-Bayesian pre-processing of image features in
the model. In summary, this work provides a normative expla-
nation for the recurrent computations that have been shown to
be involved in segmentation.
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