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Abstract
Compositionality—the ability to decompose experiences
into constituent parts and flexibly recombine them—is
fundamental to human intelligence. Despite the vast com-
binatorial space created by even basic elements, humans
efficiently navigate potential configurations during visual
inference. We present a neuro-symbolic approach fram-
ing visual compositional inference as inverse graphics
through guided program synthesis, implemented as neu-
ral diffusion on syntax trees. Our model represents im-
ages as programs, using a conditional neural network
and value model to enable efficient beam-search through
program space. Validated against human behavioral data,
the model achieved human-like performance across trial
types. This framework provides a computational account
of visual inference as search through compositional state
space.
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neural diffusion; neural replay

Introduction
Compositionality is fundamental to human intelligence (Frank-
land & Greene, 2020, Kurth-Nelson et al., 2023). The capacity
to break down experiences into constituent parts and dynam-
ically recombine them is present across cognitive domains.
In the visual domain, the brain processes complex scenes by
combining object representations with spatial rules. Despite
the vast state space of possible combinations, humans rapidly
learn rich visual representations and efficiently guide search
through the compositional state space. We apply a neuro-
symbolic approach to model compositional visual inference
that explains both human structural capacity and search ef-
ficiency. Computationally, we treat visual inference as inverse
graphics through program synthesis, implemented as guided
neural diffusion on syntactically valid syntax trees (Kapur et
al., 2024).

Task
In an MEG inference task, subjects were trained to con-
struct shapes out of elementary building blocks, then pre-
sented with silhouettes constructed from these blocks and
asked to infer the underlying blocks and their spatial rela-
tionships (Schwartenbeck et al., 2023) (Figure 1A). This task
casts visual compositional inference as hypothesis testing.
Our framework allows for a principled derivation of the dy-
namics of hypothesis testing through program synthesis in an
inverse graphics task.

Computational Model
Our approach implements a neural diffusion model operating
directly on syntax trees, enabling iterative program refinement
while maintaining syntactic validity (Kapur et al., 2024) (Figure
1B). Visual images are represented as programs written in a
Domain-Specific Language governed by a Context-Free gram-
mar. Given an initial program z0 (and corresponding image x0,
noise is added to the syntax tree through syntactically valid
mutations. Denoising is cast as recovering the target program
z corresponding to image observation x. A conditional neural
network models the distribution of programs at the previous
step, giving policy qφ(zt−1|zt ,xt ;x0). An edit path between
target and mutated trees trains a value model υφ(XA,XB), to
predict edit distance between images. The integration of pol-
icy and value model enables efficient search through program
space, as only nodes with promising values are expanded.

Results
The model learned to perform the visual inference task at a
human-like level After training, the model reached 77.08% ±
3.99% accuracy, approaching human performance levels of
82.38% ± 3.28% (Figure 2A). It recapitulated a qualitative per-
formance difference across trial-types, where trials both hu-
mans and the model performed better on trials where they
had to infer the relationship between blocks that were not
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Figure 1: A. In MEG, humans performed a compositional visual inference task. Given a target silhouette, they had to reconstruct
its underlying structure and composition. Neural replay in the hippocampal-prefrontal circuit was found to occur at the time of
inference. B. Treated as an inverse graphics task, the neural diffusion model uses a conditional neural network conditioned on
the current program zt , current output xt , and target output x0 (here, the silhouette) to model the distribution of programs at the
previous step: qφ(zt−1|zt ,xt ;x0).

adjacent to each other in the silhouette (not-connected trials)
than those where they were (connected trials). In addition,
there was a strong positive correlation between human re-
action times and the number of nodes expanded by the pro-
gram (r (46) = .77, p = .07), suggesting similar computational
approaches during search through compositional state space
(Figure 2B).
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Figure 2: A. After training, the model approached human
performance levels and recapitulated differences across trial-
types. B. Correlation between human reaction times and the
number of nodes expanded by the model r (46) = .77, p = .07).

Conclusions
Our neuro-symbolic approach, which implements visual com-
positional inference as inverse graphics through neural diffu-
sion on syntax trees, offers a computational framework that
explains both human structural capacity and search efficiency.
The model achieved human-like performance and mirrored
performance differences across trial types, with model search
complexity correlating with human reaction times. This sug-
gests humans may employ similar computational strategies
when navigating compositional state spaces. While the neural
mechanisms underlying compositional thought remain largely
unexplored, our framework provides a computationally princi-
pled method to investigate these algorithms in the brain. By
framing visual inference as a guided search through a com-
positional program space, we establish a foundation for fu-
ture work connecting computational models with neural data,
which we aim to do in ongoing investigation of MEG data.
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