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Abstract

Human vision prioritizes the center of gaze through
spatially-variant retinal sampling, leading to magnifica-
tion of the fovea in cortical visual maps. In contrast,
deep neural network models (DNNs) typically operate
on spatially uniform inputs, limiting their use in under-
standing the active and foveated nature of human vi-
sion. Prior works exploring foveated sampling in DNNs
have introduced anisotropy in their attempts to wrangle
retinal samples into a grid-like representation, sacrific-
ing faithful cortical retinotopy and creating undesirable
warped receptive field shapes that depend on eccentric-
ity. Here, we offer an alternative approach by adapting
the model architecture to enable realistic foveated sens-
ing. First, we develop a spatially-variant input sensor
derived from the assumption of isotropic cortical mag-
nification. Second, as this produces a curved sensor
manifold, we devise a novel method for hierarchical con-
volutional processing that defines receptive fields as k-
nearest-neighborhoods on the sensor manifold. This ap-
proach allows us to build hierarchical KNN convolutional
neural networks (KNN-CNNs) closely matched to their
CNN counterparts. Architecturally, these models have
more realistic cortical retinotopy and desirable recep-
tive field properties, such as increasing size and approxi-
mately constant shape as a function of eccentricity. Train-
ing foveated KNN-CNNs end-to-end over natural images
on a categorization task, we find that they provide im-
proved performance relative to non-foveated CNNs when
retinal resources are constrained relative to the native im-
age resolution. Moreover, they exhibit increasing perfor-
mance with multiple fixations that encode different parts
of the image in high-resolution. Broadly, this model class
offers a more biologically-aligned sampling of the visual
world, enabling future computational work to model the
active and spatial nature of human vision, and to build
more neurally mappable models.

Introduction

The primate retina samples visual information most densely
in the fovea —- corresponding to the center of gaze — where
color-sensitive cones and ganglion cells are heavily concen-
trated. Sampling drops off quickly toward the periphery. This
space-variant retinal sampling is thought to be closely related
to the cortical magnification factor (CMF), which gives the ex-
tent of visual cortex spanned by a constant extent of the vi-
sual field, at each point in the visual field. In their seminal
work, Daniel and Whitteridge (1961) found that the CMF de-
creases sharply with eccentricity, but is roughly constant at all
points in the visual field of constant eccentricity. This is known
as isotropic cortical magnification (see also Schwartz (1980);
Rovamo and Virsu (1984)), as the sampling rate is the same
at a given point regardless of which direction it is measured.
Many attempts have been made to model foveation in com-
puter vision (Wang, Mayo, Deza, Barbu, & Conwell, 2021;

Da Costa, Kornemann, Goebel, & Senden, 2024; Jérémie,
Daucé, & Perrinet, 2024), demonstrating some intriguing ben-
efits. However, these approaches — whether using a warped
Cartesian space (Wang et al., 2021; Da Costa et al., 2024),
or a log-polar image model (Jérémie et al., 2024) — introduce
anisotropic sampling across space in their attempts to pro-
duce a rectangular, grid-like output image suitable for stan-
dard computer vision. This anisotropy is dependent on eccen-
tricity, and the shape of unit receptive fields computed in these
spaces thus varies with eccentricity, which is particularly trou-
bling for convolutional architectures. Moreover, sampling rate
has generally not been well tuned to the native image resolu-
tion, leading to oversampling or blurring of the fovea.

Method
Foveation with isotropic cortical magnification

Here, we address these challenges by sampling visual
space with isotropic cortical magnification, drawing on the
mathematical models of Schwartz (1980) and Rovamo and
Virsu (1984). First, given the cortical magnification function
M(r) =1/(r+ a), we sample the image from the fovea to the
periphery (radially) equally in the logarithmic dimension given
by the CMF integral (w = log(r 4+ a)). Second, we determine
the number of equally spaced samples to draw in a circle at
each radius in order to preserve local isotropy; that is, en-
suring that the distance between neighboring angles is equal
to the distance between neighboring radii at any given point.
This ensures locally consistent spacing (isotropy) throughout
the visual field, while achieving magnification along the radial
dimension. Together, this sampling strategy produces points
that are approximately evenly distributed in the sensor mani-
folds (“cortical” space) described by the models of Schwartz
(1980) and Rovamo and Virsu (1984) (Figure 1B-C). The re-
sult of this process is a sensor that maps a standard (rectan-
gular) image into a curved manifold (Figure 1B), which can be
flattened into two hemifield representations (Figure 1C).

KNN-convolutional networks

Standard convolutional neural networks expect a rectangular
image grid (e.g. 224 x 224 pixels) and can thus not easily op-
erate over the curved sensor manifold. To address this issue,
we designed a modified convolutional architecture. Here, fil-
ters are not specified as n x n x ¢ kernels, but instead as k
x ¢ kernels, where the k samples are drawn spatially as the
k-nearest points in the sensor manifold of the previous layer
(Figure 1D). A hierarchical network can be constructed by as-
signing each layer the same sampling function, with a pro-
gressively decreasing resolution. At each layer, each unit’s
receptive field is defined by finding the k-nearest-neighbors in
the sensor manifold (Figure 1D) of the previous layer. This
allows us to create KNN-convolutional neural networks (KNN-
CNNs) that are resource matched with an arbitrary CNN, with
the same number of layers, parameters, channels, and feature
map locations per layers, along with matched pooling.
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Figure 1: Foveated sensing via isotropic cortical magnification in KNN-convolutional neural networks. A. Sensor locations in
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visual space arising from isotropic sampling according to the cortical magnification function M(r) = — = M(0) (Schwartz,

r+a

1980). We set a = 1 and a field-of-view of 16 degrees. B. The manifold of equally spaced sensor locations (Rovamo & Virsu,
1984). C. The complex log model serves as a flattened version of the sensor manifold (Schwartz, 1980). D. A visualization of
the KNN-CNN architecture, showing the construction of a receptive field in the second layer. Note that KNNs are defined in the
curved manifold space (B), but we plot the flat space to visualize the full manifold.

Results

We built a KNN-CNN matched to the classic AlexNet architec-
ture (Krizhevsky, Sutskever, & Hinton, 2012), and trained both
models on 1000-way ImageNet categorization (Deng et al.,
2009) using the standard 224x224 sampling resolution on im-
ages. AlexNet achieved an accuracy of 57.7%, whereas our
matched KNN-CNN reached an accuracy of 54.4%. Given
that images were first resized to have their shortest side be
256 (the approximate native resolution), foveated sensing at
a 224x224 resolution involves repeated sampling of the same
pixels near the center of gaze. Thus, it is perhaps surpris-
ing that the KNN-CNN model still performs close to the non-
foveated CNN, given that oversampling the fovea necessitates
undersampling the periphery. We predicted foveation would
become more useful when operating over a much higher res-
olution input than the sensor, as in the ambient light field in
the real world. Thus, in the next experiment, we simulated this
scenario by giving both a KNN-CNN and a matched-CNN the
same constrained "pixel-budget” (64x64) to work with over a
large field-of-view (90% of the image area). Here, we trained
on a 100-category subset of ImageNet. During training, the
model used 1 random fixation; at evaluation, we allowed each
model to aggregate information by averaging category logits
over 20 random fixations. We plot performance over the num-
ber of fixations (Figure 2A). This reveals a large advantage for
our foveated KNN-CNN in this resource-constrained compari-
son.

After training, the first layer of the KNN-CNN yields
orientation-tuned filters that, due to the architectual design,
naturally increase in visual size with eccentricity, while being
a constant size on the sensor manifold (Figure 2B-C), in line
with empirical data (Dumoulin & Wandell, 2008; Motter, 2009).

Discussion

This work presents a novel approach to foveated neural net-
work processing based on cortical magnification. Our sen-
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Figure 2: A. Fov-KNN-CNN outperforms standard CNN under
strong resource constraints, and improves with more fixations.
B. A convolutional kernel from a trained Fov-KNN-CNN plotted
at various corresponding points in visual space. C. The same
filter plotted in the corresponding flattened sensor space.

sor ensures locally isotropic eccentricity-dependent sampling,
while our KNN-CNN model allows for hierarchical convolu-
tional processing, yielding biologically realistic receptive field
properties. Our experiments reveal an advantage for foveation
in our model relative to uniform sensing in a standard CNN
when each is constrained to sense less pixels than are avail-
able in the environment. Our architecture provides a founda-
tion for future computational work to better model the active
and spatially-variant nature of human vision, with enhanced
mappability to retinotopic brain areas.
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