
From sequences to schemas: How recurrent neural networks learn temporal
abstractions

Abstract
The world, despite its complexity, harbors patterns and
regularities crucial for animals, with numerous real-life
processes evolving over time into structured sequences
of events. Brains have evolved to learn and exploit these
sequential regularities, by forming knowledge at different
degrees of abstraction: from simple transition and tim-
ing, to chunking, ordinal knowledge, algebraic patterns,
and finally nested tree structures. How regularities ex-
pressed in algebraic patterns or abstract schemas (e.g.,
AAB or ABA) are encoded in the brain is still an open
question. Here, we study whether and how neural circuits
acquire, organize and use such an abstract code. We first
build a computational framework to generate sequences
with abstract temporal patterns. Next, we propose Recur-
rent Neural Networks (RNN) models performing different
tasks requiring learning and predicting such sequences,
and study the conditions under which learning is possi-
ble. We study the internal representations formed by the
network models, and the extent to which these represen-
tations might be abstract, allowing to generalize to novel
sequences and tasks.
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The ability to generalize from specific experiences is fun-
damental to how we understand and interact with the world.
Yet, the precise brain mechanisms that support this ability re-
main largely elusive (Murphy, Mondragón, & Murphy, 2008;
Santolin & Saffran, 2018). A key aspect of this process in-
volves learning temporal rules–such as algebraic patterns–
from sequences of events. These patterns, like “AAB” or
“ABA”, represent abstract relational structures between ele-
ments, independent of the specific stimuli used (e.g., any to-
kens of sounds, colors, shapes, etc.) (Marcus, 2003). Unlike
simple repetition or alternation, these patterns require recog-
nizing underlying rules that govern sequence structure. How
do neural circuits learn and represent such abstract tempo-
ral schemas (Dehaene, Meyniel, Wacongne, Wang, & Pallier,
2015)? What computational principles enable the brain to de-
tect, process and exploit temporal regularities?

Recurrent Neural Networks (RNNs), which are well-suited
for modeling time-evolving processes such as working mem-
ory and decision making (Machens, Romo, & Brody, 2005),
have emerged as powerful tools in neuroscience for linking ac-
tivity to behavior (Barak, 2017; Yang & Molano-Mazón, 2021).
In this study, we use RNNs to investigate how abstract tempo-
ral structures can be learned and represented.

We first systematically generate algebraic sequences (that
may be of various lengths, but here of length L = 6) using a bi-

nary branching tree, where terminal nodes define abstract se-
quence classes. Each distinct letter is drawn from an alphabet
of a given size (Fig. 1A). We then train RNNs to perform var-
ious tasks on these sequences: classification (Fig. 1B), next-
item prediction (Fig. 3A) or reconstruction (Fig. 3B) of such se-
quences via an autoencoder. We then analyze the computa-
tional and representational properties that support abstraction
across tasks.

Figure 1: Learning temporal regularities via sequence classification.
(A) Sequences used to train all models are generated via a binary
branching tree. Classes correspond to the terminal nodes of this
tree. To generate sequences of a given class, we replace A and B
from an alphabet of a given size. (B) We train a recurrent neural
network (RNN) to classify sequences into one of multiple classes
based on the underlying temporal pattern (for clarity sequences of
length L = 3 are shown but all figures use L = 6). (C) The model
can perform the task and generalize the abstract classes to unseen
sequences.

Our results show that a discrete-time RNN trained on the
classification task (e.g., aac and bba to AAB; aca and ada to
ABA, Fig. 1B) learns to generalize well to unseen sequences
(Fig. 1C). Principal Component Analysis (PCA) of the hidden
representations reveals low-dimensional, linearly separable
representations that cluster according to abstract sequence
classes (Fig. 2A). These clusters are organized such that tran-
sitions between items (e.g. same item AA vs. different item
AB) are geometrically separable. Further analysis of hidden
unit selectivity, as in (Yang et al., 2019), shows neurons tuned
to abstract class identity (Fig. 2B, left) but not specific items
(Fig. 2B, right). Ablating class-selective neurons during testing
impairs classification performance specifically for the corre-



Figure 2: Learning temporal regularities via sequence classification. (A) PCA applied to representations reveals progressive differentiation
of sequence classes during learning. At the end of learning, hyperplanes associated with each transition in the sequence separate classes
according to whether a letter is repeated or changed. (B) We compute the selectivity of a neuron at the end of the sequence to a given
feature by computing its normalized variance (Yang et al., 2019). (C) Ablating clusters of units selective for a class during testing reduces the
performance on that class of sequences.

Figure 3: Learning temporal regularities via next-token prediction and reconstruction. (A) We train an RNN model to predict the next letter in
the sequence after receiving a partial sequence as a cue. The network can learn the training set as well as generalize. (B) We train an auto-
encoder model to reconstruct the same sequences as in Fig. 1A. (C) PCA analysis on the hidden activity at the end of the sequence reveals
higher-dimensional representations for the prediction and reconstruction models. (D) The prediction model’s ability to generalize can slightly
improve when transferring weights (input, recurrent or both) from the classification task. (E) The autoencoder model’s ability to generalize is
good for sequences of L = 3 (not shown) but poor for L = 6 (shown). However, setting the initial values of the (input, recurrent or both) weights
from a better performing model (prediction - left and classification - right) improves generalization performance.

sponding class, confirming their role in representing abstract
temporal structure (Fig. 2C).

Next, we study two other networks: an RNN tasked with
predicting the next item in the sequence (Fig. 3A), and an
auto-encoder tasked with reconstructing the input sequence
(Fig. 3B). While both achieve good performance, only the pre-
diction network generalizes well (Fig. 3D and E). PCA of hid-
den states shows that both prediction and reconstruction net-
works use higher-dimensional representations relative to the
classifier (Fig. 3C).

Given that all of these models must exploit the temporal

patterns present in the input to perform the tasks, we next ap-
ply transfer learning to assess whether these networks share
representational structure: we initialize or freeze weights from
one task to train on another. Transfer from classification to pre-
diction yields marginal gains in generalization, while transfer
(from both classification or prediction tasks) to the reconstruc-
tion task improves performance (Fig. 3D and E).

Our findings demonstrate how task constraints shape the
emergence of abstract sequence representations in RNNs
and provide insight into computational principles that might
underlie abstraction in artificial and biological neural systems.
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