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Abstract
Overwork and mismanagement of brain workload are
leading causes of mental distress. Monitoring Mental
Workload (MWL) is therefore crucial for personalized
wellbeing recommendations. Electroencephalography
(EEG) signals have been shown to assess cognitive
states during specific tasks effectively. However, modern
methods depend heavily on signal pre-processing and
hand-crafted features, limiting their ability to generalize
to unseen subjects and often requiring calibration. This
study investigates the usage of two graph-based deep
learning approaches to tackle these problems. They are
tested on two datasets alongside other widely used EEG
classifiers. The leave-one-subject-out cross-validation
(LOSOCV) strategy is used to tackle the cross-subject
generalization problem frequently encountered when
using EEG. The results show that models leveraging the
graph structure of the EEG data consistently outper-
form comparison methods on both datasets, achieving
strong performance without calibration to new subjects.
These results highlight the potential of graph-based
approaches as a foundation for future improvements
in real-time mental health monitoring and personalized
interventions.
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Introduction
Mental Workload (MWL) represents the cognitive effort re-
quired to complete a task and plays a crucial role in cogni-
tive performance, productivity and well-being. In recent years,
EEG has become a widely used tool for MWL monitoring due
to its non-invasive nature, high temporal resolution, and rel-
atively low cost. Traditional MWL classification methods rely
on handcrafted EEG features, such as spectral power in spe-
cific frequency bands (Brouwer et al., 2012; Borghini, Astolfi,
Vecchiato, Mattia, & Babiloni, 2014). To enhance these neuro-
markers, machine learning approaches have been explored.
These range from traditional classifiers like Support Vec-
tor Machines (SVM), Random Forest, and k-Nearest Neigh-
bors (k-NN) (Lim, Sourina, Liu, & Wang, 2015; So, Wong,
Mak, & Chan, 2017; Singh & Ahirwal, 2021), to Riemannian
Geometry-based models incorporating transfer learning to re-
duce the need for subject-specific calibration (Kremer, Halimi,
Walshe, Cerf, & Mainar, 2024). However, these methods rely
on predefined spectral characteristics and usually require cali-
bration for each subject, limiting their generalizability and real-
time applicability. More recent deep learning methods aim
to eliminate the need for extensive signal pre-processing and
manual feature engineering (Sun et al., 2020; Ding, Robinson,
Zhang, Zeng, & Guan, 2022; Siddhad, Roy, & Kim, 2025).
Graph neural networks (GNNs) have shown promise in EEG-
based seizure detection due to their ability to model brain con-
nectivity (Tang et al., 2021; Li, Hwang, Li, Wu, & Ji, 2022), yet

their potential for MWL classification has remained underex-
plored. This work closes this gap by evaluating graph-based
models for MWL classification and comparing them to widely
used EEG classifiers. To ensure robust, subject-independent
evaluation, leave-one-subject-out cross-validation (LOSOCV)
is used, which better assesses generalization across individ-
uals.

Methods
Data The evaluation of the models was done on the following
two datasets:

• Mantis (Fig. 1A.) is a private dataset collected by
[Redacted for Anonimity]. EEG data was recorded from 100
subjects (aged 20–71) performing cognitive tasks in a driv-
ing simulator. Only N-back (Jonides et al., 1997) tasks were
analyzed, using six difficulty levels (N ∈ {0,1,2,3,4,5}) as a
proxy for MWL. EEG was recorded at 500 Hz with 32 gel-
based electrodes (10-20 system).

• STEW (Lim, Sourina, & Wang, 2018) is widely used pub-
lic dataset. EEG data was recorded from 48 subjects per-
forming the SIMKAP multitasking test (Bratfisch & Hagman,
2008), using a 14-channel at 128 Hz (10-20 system). The
experiment had two conditions: a 2.5-minute resting base-
line and 2.5-minute SIMKAP task.

Figure 1B outlines the preprocessing and analysis pipeline for
EEG datasets. Both datasets underwent the same standard
preprocessing steps, including resampling to 250 Hz, notch
filtering at 50 Hz, bad channel removal, and referencing to a
common average. In step 3 (Reshape), the Mantis dataset
was split into 1s epochs with an overlap of 0.3, while the
STEW dataset used an overlap of 0.5. Additionally, the num-
ber of stacked epochs (K) was set to 30 for Mantis and 15 for
STEW, accounting for the different amounts of data available.

Classifiers The two main candidates with graph-based ap-
proaches are the following:

• GGN: The architecture (Li et al., 2022) integrates a connec-
tivity graph generator, spatial decoder with attentive graph
convolution, CNNs, and a fully connected classifier. It ex-
tracts brain connectivity from EEG data, refines features via
CNNs, and classifies seizure types using a fully connected
layer.

• GNN: The Self-Supervised GNN-SSL (Tang et al., 2021)
models EEG as a graph, using electrode geometry or dy-
namic connectivity to capture spatiotemporal dependen-
cies.

To have a comparison with the most widely used models for
MWL, the performance of CNN (Asif, Roy, Tang, & Harrer,
2020), and Transformer (Yan, Li, Xu, Yu, & Xu, 2022; Siddhad,
Gupta, Dogra, & Roy, 2024) is also evaluated.
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Figure 1: A: Mantis dataset: EEG data collected with 32 electrodes placed accordingly to the 10-20 system while involved in
driving a simulator and performing N-Back memory task; B: End-to-End pipeline.

Table 1: Classification results across different Datasets and tasks. The best-performing model for each task is highlighted in
bold.

Model Mantis 1 Mantis 2 Mantis 3 STEW Dataset
Accuracy ± Std Accuracy ± Std Accuracy ± Std Accuracy ± Std

GGN 0.83 ± 0.017 0.77 ± 0.012 0.50 ± 0.050 0.79 ± 0.026
GNN 0.73 ± 0.010 0.70 ± 0.010 0.54 ± 0.060 0.57 ± 0.014
Transformer 0.79 ± 0.012 0.62 ± 0.010 0.47 ± 0.060 0.51 ± 0.015
CNN 0.84 ± 0.017 0.66 ± 0.009 0.42 ± 0.050 0.72 ± 0.028

Evaluation Strategy MWL literature is usually evaluating
their models using a classical train-val-test split after combin-
ing and shuffling all the data from all subjects and all ses-
sions (Sun et al., 2020; Ding et al., 2022). Given the high
level of inter-subject variability of EEG responses to same type
of stimuli,it is important to make sure that good accuracy is
maintained when the model is tested on unseen participants
(Kingphai & Moshfeghi, 2024). Figure 1B.5 demonstrates the
data splitting process: set aside the full data from one subject
for testing while the rest is partitioned into train and validation
using a standard 80-20 split. This procedure is repeated until
each subject is used once as a testing subject.

Results
The classifiers have been evaluated on the following tasks:
Baseline (Mantis 1): classify between eyes open and eyes
closed. Easy task, sanity check;
Easy vs Hard (Mantis 2): classify whether the participant is
doing N-Back level (N ∈ {0,1}) easy, or a hard (N ∈ {4,5});
Easy vs Medium vs Hard (Mantis 3): classify whether the
participant is doing N-Back level easy (N ∈ {0,1}), medium
(N ∈ {2,3}) or hard (N ∈ {4,5};
STEW: classify between easy (no task) or hard(SIMKAP
task).

Table 1 contains results for all these tasks. It can be ob-
served that everywhere except on the Baseline (Mantis 1),
the graph approaches are beating previous state-of-the-art re-

sults.

Conclusions
This study demonstrates that graph-based models are shown
to outperform traditional EEG classifiers for MWL assessment,
particularly in their ability to generalize across subjects without
requiring calibration data. By leveraging the natural network
structure of EEG signals, these models provide a promising
path toward more robust, subject-independent MWL monitor-
ing. Future work will focus on expanding dataset diversity, im-
proving interpretability, and integrating real-time applications
for adaptive cognitive monitoring.
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