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Abstract

Advances in automated tracking tools have sparked a
growing interest in studying naturalistic behavior in an-
imals. Yet, traditional decision-making tasks remain the
norm for assessing learning behavior in neuroscience.
Here, we present an alternative sequential decision-
making task to study complex mouse behavior. We de-
veloped a 3D-printed mechanical puzzle, a so-called lock-
box, that requires a sequence of four steps to be solved
in a specific order. During the task, the mice move around
freely, enabling the emergence of complex behavioral pat-
terns. We observed that mice exhibit a high level of mo-
tivation, willingly engage in the task, and learn to solve
it in only a few trials. To analyze the strategy the mice
use to solve the task, we used three cameras to capture
different perspectives and developed a custom data anal-
ysis pipeline. Our analyses suggest that the rapidly in-
creasing performance is primarily due to the acquisition
of manipulation skills, although first signs of a cognitive
strategy for the task appear during later trials.
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Introduction

Systems neuroscience research traditionally relies on rela-
tively simple decision-making tasks. While this greatly simpli-
fies behavioral analyses, it also constrains the rich behavioral
repertoire observed in more natural settings. What is more,
even simple tasks like forced two-alternative decision mak-
ing tasks often require extensive training (thousands of trials)
for animals like mice. In contrast, rapid learning is observed
in more naturalistic contexts like fear conditioning or foraging
tasks such as maze navigation (Meister, 2022).

Recent advances in automated tracking tools enable the
study of behavior in more complex, freely-moving settings, but
analyzing behavior without explicit task structure can be chal-
lenging. Inspired by classic puzzle boxes (Thorndike, 1911)
and modern variations used in other species (Auersperg,
Kacelnick, & von Bayern, 2013, Jacobson et al., 2023), we
designed a novel task for mice that combines free behavior
with a well-defined sequential structure. Our “lockbox” is a
3D-printed mechanical puzzle requiring mice to solve four dis-
tinct mechanisms: a lever, a stick, a ball, and a sliding door.
The mechanisms need to be solved in this fixed order to ac-
cess a food reward (Figure 1A). The design allows mice to
observe the mechanical linkages and engage voluntarily. To
analyze behavior, we recorded mice from multiple perspec-
tives and developed an automated video analysis pipeline
(Figure 1B). This pipeline uses deep learning-based pose es-
timation (Mathis et al, 2018, Nath et al, 2019), 3D reconstruc-
tion, and temporal filtering to classify interactions between the
mouse and each lockbox mechanism, as well as the state of
the mechanisms themselves.

Figure 1: The lockbox task. A, 3D model of the combined lock-
box. B, Schematic of the experimental setup. C, 3D models of
the individual mechanisms, used during the single mechanism
training phase.

Results

We trained a cohort of 12 mice to solve the lockbox, which
were initially exposed for 30 minutes to the combined lock-
box once, then underwent a single mechanism training (SMT)
phase in which they were exposed to the single mechanisms
(Figure 1C) in a randomized, sequential order for 11 trials. Af-
ter the SMT phase, the mice were exposed to the combined
lockbox for another 5 trials for a maximum of 30 minutes.

The mice readily interacted with the lockbox and demon-
strated rapid learning (Figure 2A). While 3 out of 12 mice
solved the task on the first exposure, 9 out of 12 succeeded
in the trial immediately following the SMT phase, with suc-
cess rates remaining high thereafter. This suggests that ini-
tial difficulties were partly due to needing to acquire manip-
ulation skills for the mechanisms, which was facilitated by
SMT phase where interaction times per mechanism greatly
decreased (Figure 2B). The single mechanisms were consis-
tently solved by the mice across the 11 trials with only few
failure trials.

To investigate the underlying solution strategy, we dis-
cretized the behavioral data into interactions with the different
mechanisms and performed a Bayesian analysis comparing
a “random” interaction model (using the overall mechanism
preference of a mouse as prior) against a “smart” ε-greedy
model (preferring the correct mechanism for the current state).
When considering the entire trial (Figure 2C, ‘LSBD’), the ran-
dom model provided a better fit, largely influenced by the nu-
merous interactions during the initial ‘closed’ state. However,
when analyzing only the later stages of the task (i.e., after the
lever and stick were solved), the likelihood of the ‘smart’ strat-
egy increased across trials (‘BD’ and ‘D’), with the inferred ex-
ploration parameter ε decreasing (Figure 2D). This indicates
that mice developed a solution strategy specifically for the final
steps.

We further tested this by simulating ‘random’ agents using
a Markov decision process model of the task (Figure 3A), in-



Figure 2: Mice improve through manipulation skills and strat-
egy formation. A, Number of mice solving the combined lock-
box. B, Interaction times for the SMT phase. C, Likelihood
of mice behaving with a ‘smart’ (ε-greedy) strategy for various
slices of the data and D, corresponding ε values.

corporating overall mouse-observed mechanism preferences
and mechanism opening/closing success rates (Figure 3B).
While the overall solving portion and average actions could be
matched, the distribution of ‘stateful’ actions (interactions with
the currently correct mechanism for a given state) differed be-
tween mice and random agents in the later ‘2 open’ (ball) and
‘3 open’ (door) states (Figure 3C). Mice performed stateful ac-
tions more often than predicted by the random model in these
later states, supporting the Bayesian analysis finding of a de-
veloping strategy.

To delineate different types of learning (i.e., the acquisition
of manipulation skills to open the mechanisms and a higher-
level cognitive strategy), we simulated each possible combi-
nation in a separate model and qualitatively compared their
performance with that of the mice (Figure 3D). The ‘unskilled’
agents adopt a random (i.e., state-independent) strategy, and
their state-transition probabilities are fixed to the mouse suc-
cess rates from the first trial in Figure 3B. The ‘motor skill
only’ agents have dynamic per-trial state-transition probabil-
ities, corresponding to the success rates of mice across trials.
The ‘smart only’ agents have the same state-transition proba-
bilities as the ‘unskilled’ agents, but adopt an ε-greedy policy
for the later states, based on the Bayesian inference results
and the number of successful mice. Lastly, the ‘motor skill +
smart’ agents contain both features. We find that, while the in-
clusion of skill learning is the largest contributor to match the
mouse learning curve, the combination of developing object
manipulation skills and a higher-level task strategy is neces-
sary to fully recreate the mouse learning behavior.

Figure 3: Simulated trial comparison. A, Markov state dia-
gram representing the lockbox. Actions that do not yield state-
transitions are omitted. B, Mouse success rates for opening
lockbox mechanisms. C, Portion of stateful actions for the dif-
ferent states for mice and agents. D, Per-trial number of mice
(or agents) solving the (simulated) lockbox task. Batches of
12 agents are sampled 100 times, having a 200-action cutoff
limit per trial.

Conclusions

We introduced the lockbox as a novel tool for studying sequen-
tial decision-making and mechanical problem-solving in freely
moving mice. Mice learned this relatively complex, four-step
task surprisingly quickly compared to conventional operant
tasks, demonstrating its potential utility of more ethologically
relevant challenges. Our analysis pipeline allowed detailed
quantification of behavior, revealing that learning involved both
rapid improvement in object manipulation skills and the emer-
gence of a task-specific strategy. Interestingly, this strategic
improvement appeared predominantly in the later stages of
the sequence, suggesting a possible shift from exploration to
exploitation within a trial as the goal nears.

The fact that mice didn’t immediately adopt a strategy, rely-
ing mostly on random exploration biased by preference (espe-
cially initially), could reflect an ecologically sound approach. In
environments where problems vary, investing heavily in learn-
ing specific sequences may be less beneficial than developing
generalizable motor skills and effective exploratory heuristics.
The lockbox paradigm, by requiring distinct manipulations, al-
lows dissecting these components. Future studies could ex-
plore generalization by altering the sequence or mechanisms
or utilize automated setups for longitudinal studies with larger
datasets to track the fine-grained evolution of skill and strategy
over extended periods.
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