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Abstract
Cognitive computational neuroscience embraces ma-
chine learning techniques to gain insight into how the
brain represents and transforms visual information. Re-
cent advances have allowed the field to move from classic
category inventory approaches to more contextualized,
semantic aspects, e.g. by mapping visual responses to
natural scenes to corresponding language embeddings
of scene captions. While the latter is powerful, single
embedding vectors or captions may not fully capture the
distributed cortical feature selectivity or complex spatial
and semantic interactions in natural scenes. To go be-
yond passive representation analysis and develop inter-
active approaches to neural data interpretation, we ex-
tend large language models to combine a natural lan-
guage interface with brain data. The resulting framework,
CorText-AMA, provides an interactive chat interface that
enables researchers to interrogate neural representations
of natural scenes. This approach preserves semantic
context while simultaneously allowing us to isolate and
examine specific dimensions of brain representations. To
make this possible, we combine a transformer-based mul-
timodal model and functional brain alignment with a large
instruction-finetuning dataset of question-answer pairs
defined on natural scenes. The current model enables
flexible probing of decodable information in visual cortex
and outperforms control models. Future work will further
investigate the usage of CorText-AMA as an interactive di-
agnostic readout that allows contrasting which questions
can be answered based on neural responses in specific
brain regions, and which cannot.
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Results
Here, we present CorText-AMA, a novel end-to-end trainable
multimodal model, combining fMRI data and language for flex-
ible neural decoding and diagnostic probing of visually evoked
neural responses to complex scenes. By implementing an
intermediate fusion approach that combines brain and lan-
guage embeddings, we enable conditional generation where
neural “context” directly guides answer generation. We first
parcellate the neural responses of visual cortex to complex
scenes, and embed the responses from the resulting 82 re-
gions with region-specific linear encoders. Together with the
question word embeddings, these are fed as a multimodal in-
put token sequence to the language decoder (Llama 2), which
autoregressively continues the sequence by answering the
question. The model is trained using the image captions and
instruction question-answering pairs available for the stimuli
(X. Chen et al., 2015; Liu, Li, Wu, & Lee, 2023) (Fig. 1A; see
Methods). Cortext-AMA is trained using the Natural Scenes
Dataset (NSD), a 7T fMRI dataset of neural responses to im-
ages of complex natural scenes (Allen et al., 2022). To ad-
dress the data-hungry nature of transformers, we make use

of Shared Response Modeling (SRM), a functional alignment
technique that maps individual subjects’ neural data into a
shared, lower-dimensional representational space that gen-
eralizes to unpaired data (P. C. Chen et al., 2015). This ap-
proach effectively expands our available training data by align-
ing unique data from all 8 subjects (Fig. 1B). As control mod-
els, we train one model per subject, which results in decod-
ing performance (CLIPScore) of captions and answers above
the performance of a shuffled control (8 models; µcap = 0.51,
µq&a = 0.72 Fig. C), and a model on unaligned aggregated
data from all 8 subjects (µcap = 0.49, µq&a = 0.70). The mul-
tisubject (SRM) model, with eight-fold multiplication of train-
ing data, yields significant improvements in caption decoding
performance and question-answer capacity compared to the
control models (µcap = 0.54, individual vs aligned: p < 0.01,
unaligned vs aligned: p < 0.001; µq&a = 0.83, individual vs
aligned: p< 0.001, unaligned vs aligned: p< 0.001; indepen-
dent permutation tests, n=10000; Fig. 1C, see 1D for exam-
ples). This demonstrates that by using functional alignment,
neural decoding performance might be further improved with-
out having to collect more data for individual subjects.

Discussion
Semantic decoding of neural content has significantly ad-
vanced in the last few years, with new machine learning tech-
niques fueling its development. Notably, large language mod-
els offer a promising new tool that can be used to decode
semantic embeddings and image captions from neural data
(Doerig et al., 2022; Zhang, Han, Worth, & Liu, 2020; Fer-
rante, Ozcelik, Boccato, VanRullen, & Toschi, 2023; Luo, Hen-
derson, Tarr, & Wehbe, 2023; Matsuyama, Nishimoto, & Tak-
agi, 2025; Scotti et al., 2024; Bosch et al., 2024). While
few studies on brain-language fusion for question-answering
have been presented recently (Huang, Ma, Xie, & Wang,
2025; J. Chen, Qi, Wang, & Pan, 2023; Qiu et al., 2025),
our work makes several contributions to this emerging topic.
First, we provide an end-to-end training pipeline that neither
includes access to the underlying images during training, nor
pre-trained models such as CLIP (Radford et al., 2021) that
have seen the underlying stimulus materials. This reduces
the risk of the model memorizing a simple look-up table. Sec-
ond, by conceptualizing the brain as a non-linear “image em-
bedder” and implementing fully linear brain data encoders, we
enable encoding reversal back into vertex space and allow
for explicit testing of linear decodability. Lastly, we also show
that aligning neural data of multiple participants increases per-
formance, possibly indicating a data deficiency that needs to
be overcome for training large-scale neural decoding models
(Banville, Benchetrit, d’Ascoli, Rapin, & King, 2025). Together,
these results reveal the potential of CorText-AMA as an inter-
active diagnostic tool that enables targeted probing of neural
data.

Methods
Dataset The Natural Scenes Dataset (NSD) contains 7T
fMRI measurements of 8 participants who have each viewed



Figure 1: A - The CorText-AMA architecture: The fMRI data of visual cortex is parcellated and linearly embedded into 4096-dimensional
embeddings to match the input word embedding dimensionality. Together with the question word embeddings, these are fed as a sequence
to the language decoder, which autoregressively generates an answer. B - Model input data: We compare three approaches to neural data
input: individual models (n=8) trained on data from single subjects, a model trained on ‘naively’ aggregated unaligned data from all subjects,
and one model trained on functionally aligned data from all subjects using Shared Response Modeling (SRM). C - Performance evaluation:
Caption generation and question-answering performance across model types demonstrates that the SRM-aligned model outperforms controls.
D - Example predictions: Answers generated by the multisubject SRM-aligned model in response to human questions about image-evoked
neural activity.

9000 unique images and up to 1000 shared images from the
MS COCO dataset (Lin et al., 2014). We use the beta values
of the 1.8-mm volume preparation in fsaverage space. We
parcellate the visual cortex into 82 regions of interest (ROI)
per the HCP-MMP1 atlas (Glasser et al., 2016). Each im-
age in NSD has five human captions from MS COCO, which
we use to construct question-answers pairs asking e.g. “De-
scribe the following image”. In addition, each image has up
to 5 question-answer pairs from the Llava-Instruct-150k vi-
sual question-answering dataset for multimodal instruction-
following (Liu et al., 2023). We use the unique trials as training
data, and the remaining shared trials as test dataset.

Shared Response Modeling The neural data for 8 subjects
is aligned using SRM, which is fit using the first 515 shared
test images of each subject. The number of features for the
SRM fit is determined by performing PCA over the train data
per ROI and determining how many components are required
to capture 99% of variance in that region. The learnt fit is then
used to transform all remaining data into the shared subject
space.

Architecture Cortext-AMA is a multimodal decoder-only
transformer-based architecture, using Llama 2 (7B-instruct),
an autoregressive causal language model, as backbone
(Touvron et al., 2023). To enable multimodal fusion between
neural data and language, we use 82 linear encoders, one for
each ROI in visual cortex. To reduce the encoder size, we
use a low-rank linear projection to embed neural data of each
ROI. We identify the number of principal components required
to capture 95% of variance in the original 4096-dimensional
embeddings of all captions in the train set of subject 1. We
project the data of each ROI in a linear layer of that size (921
components). We retain the PCA projection and use its trans-
pose as a frozen intermediate linear layer to upscale the brain
embedding to the word embedding space dimensionality. The

neural data for each trial is embedded by the ROI encoders
and concatenated with the Llama tokenizer-embedded ques-
tion for that trial, resulting in a multimodal input sequence of
brain and text embeddings.

Training Model training consists of two phases (20 epochs
each): during pre-training, only the brain encoders and layer
normalization throughout the Llama decoder are trainable, ef-
fectively training a brain-tokenizer compatible with the lan-
guage decoder. For finetuning, we employ Quantized Low-
Rank Adaptation (QLoRA; (Dettmers, Pagnoni, Holtzman, &
Zettlemoyer, 2023)) to adapt the Q and V projection matrices
of the decoder, while keeping the original decoder frozen and
quantized for memory efficiency. We use QLoRA with a rank
of 16, α = 16, and dropout of 5e-2. The model minimises
cross-entropy between generated and true answers for each
trial. Models are pre-trained with AdamW-8bit and a batch
size of 25, a learning rate of 1e-3, a cosine lr scheduler, and
L2 encoder weight regularization (2e-1). Finetuning continues
with a reduced learning rate (2e-5) and L2 (5e-4).

Metrics To evaluate the quality of the answers generated
from the neural data test set, we assess two tasks. We mea-
sure the ability of the model to generate scene captions (re-
sponses to questions such as “describe the content of this
image”) using CLIPScore (Hessel, Holtzman, Forbes, Bras, &
Choi, 2021) to evaluate the correspondence of the generated
caption with the stimulus image. The ceiling is set by the aver-
age CLIPScore of all MS COCO human captions. To evaluate
the answers generated with the Llava-Instruct130k data, we
use RefCLIPscore to capture semantic correspondences with
ground truth answers, dealing with answers that differ syntac-
tically but have similar meaning. Lower bounds reflect the cor-
respondence between shuffled generated and true answers.
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