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Abstract

A foundational principle of connectionism is that perception, ac-
tion, and cognition emerge from parallel computations among
simple, interconnected units that generate and rely on neural
representations. Accordingly, researchers employ multivariate
pattern analysis to decode and compare the neural codes of
artificial and biological networks, aiming to uncover their func-
tions. However, there is limited analytical understanding of how
a network’s representation and function relate, despite this be-
ing essential to any quantitative notion of underlying function
or functional similarity. We address this question using fully
analysable two-layer linear networks and numerical simulations
in nonlinear networks. We find that function and representa-
tion are dissociated, allowing representational similarity without
functional similarity and vice versa. Further, we show that nei-
ther robustness to input noise nor the level of generalization er-
ror constrain representations to the task. In contrast, networks
robust to parameter noise have limited representational flexibil-
ity and must employ task-specific representations. Our findings
suggest that representational alignment reflects computational
advantages beyond functional alignment alone, with significant
implications for interpreting and comparing the representations

of connectionist systems.

Introduction

The parallel distributed processing hypothesis posits that
function in artificial and biological networks emerges from in-
teractions among simple interconnected units that compute
with distributed representations (Rumelhart et al., 1986). Ac-
cordingly, one might aim to identify function from network ob-
servables such as connectivity weights and neural activity pat-
terns; however, this is often complicated by the inherent com-
plexity and partial observability of these systems. In particu-
lar, the structure of artificial and biological networks is often
non-identifiable in the sense that networks can be structurally
distinct, yet implement the same input-output mapping.

Even deep linear networks are non-identifiable. Such net-
works effectively perform a linear transformation (Laurent &
von Brecht, 2018), but do so through multistage computa-
tions that give rise to hidden-layer representations. As a re-
sult, the optimisation landscape of a deep linear network is
non-convex and enjoys a high-dimensional manifold of min-
ima whose shape is determined by the statistics of training
data and the network architecture (Arora et al., 2019; Baldi
& Hornik, 1989; Saxe et al., 2014), making it a useful surro-
gate for studying representation learning (Braun et al., 2022;
Dominé et al., 2024; Saxe et al., 2019). Here, we leverage the
analytical tractability of deep linear networks to study func-
tionally equivalent parametrisations at global minimum error.

1A longer version of this work appeared as Braun et al. (2025).
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Crucially, these solutions employ different internal represen-
tations, which has significant computational consequences,
most notably in their affordances for linear decoding, repre-
sentational similarity analysis and their sensitivity to noise.

Solution manifold of two-layer linear networks

Deep linear networks are highly overparametrised, admit-
ting many weight configurations that achieve the global opti-
mum—collectively known as the solution manifold. Within this
manifold (e.g., , Figure 1A,B), we analytically identify four dis-
tinct sub-regions: (a) general linear (GLS), (b) least-squares
(LSS), (c) minimum representation norm (MRNS), and (d)
minimum weight norm solutions (MWNS). Crucially, all sub-
regions attain the same minimal training error but differ in
their hidden-layer representations. While GLS and LSS can
achieve almost arbitrary hidden-layer representations (Fig-
ure 1D), MRNS and MWNS have hidden-layer representations
that appear arbitrary and unstructured, however, their repre-
sentational similarity matrix (RSM) is fixed and reveals the un-
derlying structure of the task (Figure 1E,F).

Implications for analysis of representations

A common approach to comparing activity patterns across
conditions, stimuli, models, or participants is to assess the
similarity of their representational geometry (Haxby et al.,
2014; Kriegeskorte et al., 2008). However, our analytical re-
sults show that in both general and least-squares regimes, ge-
ometric relationships may not reflect the underlying computa-
tion. Linear predictivity—how well one model’s activations lin-
early predict another’s (e.g., Yamins & DiCarlo, 2016; Yamins
et al., 2014)—is often taken as evidence of functional similar-
ity. Yet, our analysis reveals that strong linear predictivity does
not guarantee functional alignment. As shown in Figure 2A.
High R? values can arise from predictions within task-agnostic
or task-specific solutions, while low values occur between dif-
ferent solution types—highlighting the risk of misinterpreting
functional equivalence when solution types are not clearly dis-
tinguished.

Further, representational similarity analysis (RSA) on the
hidden-layer representations of two random walks on solution
manifolds corresponding to different functions yields similarity
scores that fluctuate randomly between statistical significance
and insignificance (Figure 2B, left). In contrast, representa-
tional similarities are preserved among minimum weight-norm
and among minimum representation-norm solutions, resulting
in perfectly correlated representations when comparing ran-
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Figure 1: Solution manifold and hidden-layer representations. (A) Schematic of a two-layer linear network with a single training pair,
(X4,¥2). The network has three weights which connect the two input, one hidden and one output neurons. (B) Solution manifold of network
and task depicted in A. Weight W1, is in the null space of the input and thus can be set to an arbitrary value, whereas W{; and Wy,
are interdependent, if one of them increases the other one has to decrease accordingly. LSS (pink line), MRN (yellow line), and MWN
solutions (green dot) are special subregions of the solution manifold (blue). (C) Schematic of a semantic-hierarchy task. ltems (blue) in
the semantic-hierarchy task are organised within a binary tree according to their properties (pink, yellow, green). Inputs are random vectors
and corresponding target vectors encode for the position in the hierarchical tree. (D) Example least-squares solution, showing hidden-layer
representations (left), (RSM, right). While the hidden-layer representations and RSM exhibit structure, they do not reflect the structure of the
underlying semantic hierarchy. (E) Same as (C), but for a minimum-weight-norm solution. Here, neural representations are entirely determined
by the training data and influenced by the unstructured encoding of input items. As a result, hierarchical structure is only weakly preserved. (F)
Same as (C), but for a minimum-representation-norm solution. Neural representations align with the hierarchical structure, seen as structured
representational similarity matrix (RSM) and multidimensional scaling plots, where items are grouped according to their similarity within the
hierarchy.
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Figure 2: Consequences for neural analyses and the brain. (A) Linear decoding of random walks on the solution manifold of different
functions yields high RZ when predicting neural activity from task-agnostic representations (LSS) but low R when predicting from task-specific
representations (MWNS). Thus, it is valid to reject the hypothesis that two networks perform different functions only if both operate in the
task-specific regime. Similarly, independent random walks on the same solution manifold maintain high R* when predicting task-specific from
task-agnostic or task-specific representations, but predicting a task-agnostic network from a task-specific one results in low RZ, leading to
invalid rejection of functional equivalence. (B) Same as (A) but using representational similarity analysis (RSA). Comparisons between LSS
fluctuate randomly in significance, while task-specific MWNS yield stable and thus reliable measures of similarity. (C) Sensitivity to input and

parameter noise. LSS and MRNS have optimal input noise robustness, while MWNS have optimal parameter noise robustness.

input and parameter noise (Figure 2C, left), and find that so-
lutions with task-specific representations (MRNS, MWNS) are
more robust to parameter noise.

dom walks within the same function, however, not when com-
paring task-agnostic representations (Figure 2C, right).

Advantages of task-specific representations

. . . , Discussion
A natural question arises from the observation that function

and representation are dissociated: Why do we often observe
representational alignment when comparing artificial and bio-
logical systems (Sucholutsky et al., 2023)? To address this,
we demonstrate that solutions with task-specific neural repre-
sentations offer significant computational advantages. Con-
sequently, such solutions are likely to be the preferred func-
tional implementation for both artificial and biological neural
networks, resulting in representational alignment. We study
the sensitivity of different points on the solution manifold to

In this work, we give a complete analytical characterisation
of the global minima manifold for deep linear networks, and
demonstrate that sub-regions of this manifold provide differ-
ing affordances for computation and interpretation due to their
representational structure. We conclude that the use of deep,
overparametrised networks poses fundamental challenges for
representational analysis, interpretation, and comparison, as
the impact of variability in the parametrisation of functionally
equivalent representations on these use cases is significant.
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