
A joint model of risk-taking and learning related to risks based on 

behavioral and prefrontal oxygenation measures 

Hatice Gonca Bulur (bulur@metu.edu.tr) 

Department of Cognitive Science, Middle East Technical University 

Universiteler District, Dumlupinar Boulevard, No:1, 06800, Ankara, Turkey 

 

Alaz Aydın (alaz@metu.edu.tr) 

Department of Cognitive Science, Middle East Technical University 

Universiteler District, Dumlupinar Boulevard, No:1, 06800, Ankara, Turkey 

 

Barbaros Yet (byet@metu.edu.tr) 

Department of Cognitive Science, Middle East Technical University 

Universiteler District, Dumlupinar Boulevard, No:1, 06800, Ankara, Turkey 

 

Murat Perit Çakır (perit@metu.edu.tr) 

Department of Cognitive Science, Middle East Technical University 

Universiteler District, Dumlupinar Boulevard, No:1, 06800, Ankara, Turkey 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Abstract 

This study examines the neural and cognitive 

mechanisms of risk-taking by integrating behavioral 

and fNIRS data through a joint modeling approach. 

Participants completed a modified Balloon Analogue 

Risk Task (BART) under conditions varying in 

uncertainty, while a functional near-infrared 

spectroscopy (fNIRS) device was used to monitor 

their prefrontal cortex (PFC) activity. A censored 

Bayesian model estimated individual risk-taking 

propensity, which was linked to HbO levels across 

PFC subregions with a joint model. Traditional 

analyses revealed condition-specific effects, whereas 

the joint model identified individual-level correlations 

between risk propensity and PFC activity. Notably, 

stronger correlations emerged in the left dorsolateral 

PFC under structured uncertainty and in the right 

dorsolateral PFC under random uncertainty—

patterns not accounted by classical methods. These 

findings highlight the value of joint modeling in 

revealing latent brain–behavior relationships. 

Keywords: decision making under risk and 
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Introduction 

This study explores the neural correlates of risk-taking 

and probability learning under varying levels of 

uncertainty. The  BART task, which assesses risk taking 

behavior in a computer environment (Aklin et al., 2005; 

Charness et al., 2013; Lejuez et al., 2002), is used in 

conjunction with fNIRS to examine decision-making 

across conditions. In BART, participants inflate a virtual 

balloon to increase potential earnings, with each pump 

raising both reward and the risk of explosion. They may 

cash out at any time; if the balloon bursts, no earnings are 

added for that trial. 

We conducted two BART experiments (perfect 

gambling, probability learning) developed in 

OpenSesame (Lejuez et al., 2002; Zosky, 2019), using a 

repeated measures design while recording fNIRS data 

over the PFC. Fourty-nine participants with no reported 

                                                 
1𝑓𝑗𝑖𝑥: samples in each ROI, 𝛿𝑗𝑖𝑥: their mean value & 

𝜎𝑗𝑥: variance, 𝛴𝑗: covariance matrix, 𝜌𝑗𝑖: RTP, 𝛽𝑗𝑖: 

neurological or psychiatric disorders completed both 

experiments. Each experiment included 75 trials: 30 with 

mixed-color balloons and 45 with constant-color balloons 

(15 red, blue, and yellow). The tasks were structurally 

identical, but only the probability learning condition 

assigned fixed explosion probabilities (blue = 1/8, red = 

1/32, yellow = 1/128), allowing participants to learn risk 

levels. Additional monetary rewards were tied to 

performance. 

fNIRS data were collected at 2 Hz from 16 

optodes over the PFC. A finite impulse response filter was 

applied to attenuate physiological noise in the raw fNIRS 

data, which were then converted into oxygenated 

hemoglobin (HbO) concentration changes using the 

modified Beer–Lambert law. The HbO signals were 

averaged into five ROIs: left dlPFC (Optodes 1–4), left 

dmPFC (5&6), frontopolar (7–10), right dmPFC (11&12), 

and right dlPFC (13–16). 

Behavioral and fNIRS data were analyzed using 

both traditional methods and a joint model to estimate 

participants’ individual number of pumps (INOP) in the 

BART (Figure 1). The behavioral component, based on a 

censored log-normal model (Coon & Lee, 2022), 

produced participant-level estimates of risk-taking 

propensity (ρ) and behavioral consistency (β). The neural 

component, adapted from D’Alessandro et al. (2020), 

integrated ρ with HbO values from five PFC ROIs. The 

joint model estimated posterior correlations between ρ 

and HbO across blocks and conditions. 

 

 
Figure 1. The joint model used in this study1.  

behavioural consistency, 𝑦𝑗𝑖𝑡: observed NOP, 𝑦𝑗𝑖𝑡
′ : INOP, 

𝑏𝑗𝑖𝑡: trials balloon bursts. 

 



Data Analysis & Results 

A 3×2×2 repeated-measures ANOVA tested the effects of 

color, presentation order, and condition (probability 

learning vs. random) on total NOP, a common risk-taking 

measure. As shown in Figure 1, all main effects and 

interaction effects were significant, except for the order × 

condition interaction. When explosion probabilities were 

fixed, higher NOP values were observed for colors with 

lower explosion risk (e.g., yellow). In the mixed-order 

condition, NOP decreased for low-risk colors but 

remained stable for high-risk ones, indicating greater risk 

aversion. 

 
Figure 2. Mean NOP values for different balloon colors 

under different order and probability learning conditions. 

 

fNIRS data were organized into four blocks (Mix, 

Blue, Red, Yellow) for each condition: probability learning 

(PMIX, PBLUE, PRED, PYELLOW) and perfect gambling 

(RMIX, RBLUE, RRED, RYELLOW). To assess PFC 

sensitivity to uncertainty, we first compared HbO levels 

between PMIX and RMIX using paired t-tests across 16 

optodes, visualized with B-spline interpolation in fNIRSoft 

(Figure 3). Significantly higher HbO levels were found in 

the random condition at optode 13 (right dmPFC) and 

optode 16 (right dlPFC). 

 

 
Figure 3. T-map contrasting PMIX and RMIX conditions. 

While traditional analyses offered group-level 

insights, they did not account for individual variability or 

brain–behavior links. To address this, we used a joint 

model that integrates behavioral and neural data at the 

individual level, incorporating a censored model to include 

burst trials and better capture risk-taking in relation to 

PFC activity under uncertainty. 

Figure 4 shows the posterior correlations 

between risk-taking propensity (RTP or ρ) and HbO 

activity across PFC regions estimated from the joint 

model. In the PMIX condition, ρ was most strongly 

associated with the left dlPFC (r = 0.54), with moderate 

correlations in other regions. In RMIX, correlations shifted 

toward the right PFC, notably the right dlPFC (r = 0.45) 

and right dmPFC (r = 0.48), while the left dlPFC showed 

a weaker link (r = 0.33). These findings suggest that 

subregions of the PFC are differentially engaged in 

relation to individual risk-taking tendencies, depending on 

the level of uncertainty in the task environment. 

 
Figure 4. Posterior correlations between HbO levels and 

the censored RTP parameter from the joint model. 

Conclusion 

Overall, this study examined risk-taking behavior by 

integrating a censored behavioral model with fNIRS data 

in a joint modeling framework. While traditional contrast 

analyses highlighted increased right PFC activation under 

high uncertainty—likely reflecting heightened attentional 

demands and decision difficulty—they overlooked the role 

of left PFC in the probability learning condition. In 

contrast, the joint model uncovered condition-specific 

brain–behavior relationships, including the role of the left 

dlPFC in structured environments, by capturing the 

covariance structure between neural activity and 

individual differences in risk propensity. These findings 

underscore the potential of joint modeling for exploring 

latent brain–behavior relationships. 
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