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Abstract 45 

Human object recognition relies on both perceptual 46 
and semantic dimensions. Here, we examined how 47 
deep neural networks (DNNs) and large language 48 
models (LLMs) capture and integrate human-derived 49 
dimensions of object similarity. We extracted layer 50 
activations from CORnet-S and obtained BERT 51 
embeddings for 1853 images from the THINGS 52 
dataset. We used support vector regression (SVR) to 53 
quantify explained variance in human-derived 54 
dimensions. Results showed that multimodal 55 
integration improved predictions in early visual 56 
processing but offers limited additional benefits at 57 
later stages, suggesting that deep perceptual 58 
processing already encodes meaningful object 59 
representations. 60 
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Introduction 65 

Human object recognition depends on both 66 
perceptual dimensions, such as color or shape, and 67 
semantic dimensions, such as category or conceptual 68 
relationships. To investigate the relevance of 69 
perceptual dimensions, previous research has often 70 
used deep neural networks (DNNs) to identify layers 71 
that correspond to human object recognition (Cichy et 72 
al., 2016; Kriegeskorte, 2015) and found that early 73 
layers in DNNs tend to capture on more simple, 74 
perceptual features, while higher layers align more 75 
closely with complex, semantic features (Guclu & Van 76 
Gerven, 2015). Other studies have shown that large 77 
language models (LLMs) capture semantic aspects of 78 
dimensions underlying object recognition, with high 79 
similarity to human judgments (Grand et al., 2022).   80 

Combining LLMs with DNNs has been shown 81 
to outperform each modality individually (Marjieh et 82 
al., 2023), reinforcing the importance of multimodal 83 
integration in object recognition (Martin, 2016). To 84 
understand how perception and meaning interact in 85 
object recognition, it is essential to determine at which 86 
processing stages semantic information contributes.  87 

In this study, we integrated LLM embeddings 88 
with individual DNN layers and identified how 89 
perceptual and conceptual representations align 90 
along the visual hierarchy. This allowed us to quantify 91 
where semantic knowledge enhances predictions of 92 
human-derived object dimensions, revealing the 93 
dynamics of multimodal integration in object 94 
recognition.  95 

Methods 96 

We used a publicly available dataset of 49 human-97 
derived dimensions underlying human object 98 
recognition (Hebart et al., 2020) for 1853 images from 99 
the THINGS database (Hebart et al., 2019). Individual 100 
layer activations from CORnet-S (Kubilius et al., 101 
2019) were extracted using a forward-pass per 102 
image, separately for the V1, V2, V4, and IT layers. 103 
To reduce dimensionality and equate feature space 104 
size between the DNN and LLM, probabilistic PCA 105 
(Halko et al., 2010) was applied separately to each 106 
DNN layer retaining the first 200 components. Next, 107 
LLM embeddings were derived from the BERT model 108 
(Devlin et al., 2019) by averaging hidden states for 109 
prompts based on concept names from the THINGS 110 
dataset (e.g., "fish"), followed by probabilistic PCA 111 
retaining the first 200 components. Finally, a 112 
combined predictor set was created by concatenating 113 
the top 100 PCA components from the DNN with the 114 
top 100 PCA components from the LLM embeddings 115 
for each image. This resulted in three distinct 116 
predictor sets, each containing 200 features per 117 
image: (1) DNN predictors (first 200 PCA 118 
components from DNN activations), (2) LLM 119 
predictors (first 200 PCA components from BERT 120 
embeddings), and (3) Combined predictors 121 
(concatenated top 100 PCA components from both 122 
the DNN and LLM). 123 

Using these three different predictor sets, a 124 
10-fold cross-validated support vector regression 125 
(SVR) with a radial-basis function kernel was used to 126 
predict the loading for each image on 49 dimensions 127 
(Hebart et al., 2020). To evaluate model performance 128 
and determine whether predictions exceeded 129 
chance-level accuracy, we calculated the explained 130 
variance (R²) for each individual dimension 131 
separately. Statistical significance was assessed 132 
using 1000 permutations to generate a null 133 



distribution of R² values. The same procedure was 134 
applied to other DNNs (AlexNet, VGG) and LLMs 135 
(RoBerta, BERT) to assess the generalizability of the 136 
results across different architectures.  137 

Results 138 

We first assessed how perceptual features (DNN 139 
layers), semantic features (LLM embeddings), and 140 
their combination (DNN+LLM) predict human-derived 141 
dimensions. Explained variance (R²) increased 142 
progressively along the DNN hierarchy from lower-143 
level layers (V1, V2) to higher-level layers (V4, IT), 144 
reflecting a clear hierarchical structure of visual 145 
feature complexity (Fig. 1A). Semantic features from 146 
LLM embeddings alone also explained substantial 147 
variance (Fig. 1A).  148 

Inspecting individual dimension predictions 149 
revealed notable variation, with some dimensions 150 
benefiting more from perceptual than semantic 151 
features (Fig. 1B).  152 

However, across dimensions and layers, the 153 
combination of DNN and LLM features had some 154 
added benefit. For early DNN layers, the combination 155 
with LLM added to the performance while the benefit 156 
decreased as we moved up the hierarchy (Fig. 1C).  157 

Conclusion 158 

We investigated how individual DNN layers and LLM 159 
embeddings correspond to human-derived object 160 
dimensions, and whether combining both modalities 161 
enhances this correspondence. While multimodal 162 
integration benefits early visual processing, the 163 
strongest predictions occurred at later stages, where 164 
DNNs already capture high-level object 165 
representations effectively. Our results suggest that 166 
linguistic knowledge does not consistently enhance 167 

DNN-based representations in IT. This highlights that 168 
deep perceptual processing in DNNs already 169 
incorporates meaningful structure at higher levels of 170 
the visual hierarchy.  171 

Figure 1. Multimodal prediction of human object dimensions. A: R2 scores for each dimension (dots) across DNN 
layers, LLM, and combined models; gray lines connect the same dimension across models. 
Colored lines show trajectory of top 3 dimensions averaged across all methods. B: Heatmap of R2 scores per 
model/layer (rows) and dimension (columns); each square represents one prediction. C: Average R2 by layer, 
showing improved performance for combined models. Shown trend was observed across a variety of methodological 
choices.  
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Supplementary Material 248 

A: Description of Human-Derived 249 

Dimensions (Hebart et al., 2020) 250 

 251 

1 'made of metal / artificial / hard' 
2 'food-related / eating-related / 

kitchen-related' 
3 'animal-related / organic' 
4 'clothing-related / fabric / covering' 
5 'furniture-related / household-

related / artifact' 
6 'plant-related / green' 
7 'outdoors-related' 
8 'transportation / motorized / 

dynamic' 
9 'wood-related / brownish' 
10 'body part-related' 
11 'colorful' 
12 'valuable / special occasion-

related' 
13 'electronic / technology' 
14 'sport-related / recreational 

activity-related' 
15 'disc-shaped / round' 
16 'tool-related' 
17 'many small things / course 

pattern' 
18 'paper-related / thin / flat / text-

related' 
19 'fluid-related / drink-related' 
20 'long / thin' 
21 'water-related / blue' 
22 'powdery / fine-scale pattern' 
23 'red' 

24 'feminine (stereotypically) / 
decorative' 

25 'bathroom-related / sanitary' 
26 'black / noble' 
27 'weapon / danger-related / 

violence' 
28 'musical instrument-related / 

noise-related' 
29 'sky-related / flying-related / 

floating-related' 
30 'spherical / ellipsoid / rounded / 

voluminous' 
31 'repetitive' 
32 'flat / patterned' 
33 'white' 
34 'thin / flat' 
35 'disgusting / bugs' 
36 'string-related' 
37 'arms/legs/skin-related' 
38 'shiny / transparent' 
39 'construction-related / physical 

work-related' 
40 'fire-related / heat-related' 
41 'head-related / face-related' 
42 'beams-related' 
43 'seating-related / put things on 

top' 
44 'container-related / hollow' 
45 'child-related / toy-related' 
46 'medicine-related' 
47 'has grating' 
48 'handicraft-related' 
49 'cylindrical / conical' 
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