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Abstract

Some argue that deep neural networks are fundamentally
statistical systems that fail to capture the causal gen-
erative processes behind their training data. Here we
demonstrate that a GPT-style transformer trained for next-
token prediction can simultaneously discover instances
of linear Gaussian structural causal models (SCMs) and
learn to answer counterfactual queries about them. First,
we show that the network generalizes to counterfactual
queries about SCMs for which it saw only strings describ-
ing noisy interventional data. Second, we decode the im-
plicit SCM from the network’s residual stream activations
and use gradient descent to intervene on that “mental”
SCM with predictable effects on the model’s output. Our
results suggest that neural networks trained using sta-
tistical prediction objectives on passively observed data
may nevertheless discover and learn to use causal mod-
els of the world.

Keywords: deep neural networks; causal inference; large lan-
guage models, emergent representations

Introduction

Pearl (2018) has argued that deep neural networks (DNNs)
trained using prediction objectives will always be fundamen-
tally limited in their causal reasoning capacities. The argu-
ment rests on Pearl’s Causal Hierarchy (PCH) (Bareinboim
et al., 2022), also known as the “Ladder of Causation”
(Pearl & Mackenzie, 2018). PCH describes three levels
of causal capabilities— associational, interventional, and
counterfactual—where queries regarding higher levels are
generally underdetermined by data from lower levels. Accord-
ing to Pearl (2018), DNNs can only master associations be-
cause they are trained in a “statistical mode” using prediction
objectives on passive observations.

We appreciate PCH’s theoretical implications, but disagree
with the further claim that DNNs trained on prediction objec-
tives cannot go beyond the level of associations. Note that
passively observed data does not necessarily mean observa-
tional data. For instance, natural language used to train large
language models (LLMs) describes interventions and causal
inferences (Fig. 1). LLMs may discover causal structure—
the mechanisms that remain invariant under local interven-

This bottle was not marked “poison,” so
Alice ventured to taste it ... “I must be
shutting up like a telescope.” ... she was
now only ten inches high ...

“Well, I’ll eat [the cake],” said Alice, “and
if it makes me grow larger, I can reach
the key; and if it makes me grow smaller,
I can creep under the door; so either way
I’ll get into the garden ...

[She] soon finished off the cake. ... “now
I’m opening out like the largest telescope
that ever was! Good-bye, feet!”

Figure 1: Natural language includes descriptions of interven-
tions and causal inference. Examples from Alice’s Adventures
in Wonderland (Carroll, 1865).

tions (Schölkopf et al., 2021; Pearl, 2009)—and learn causal
inference engines to predict the next token on such strings.

Here we test this hypothesis empirically. We generate text
(in a made-up simple language) describing interventional data
and counterfactual inferences from a constrained class of lin-
ear Gaussian structural causal models (SCMs). Given snip-
pets of this text, we train a GPT-style transformer model to
predict the next token.

We found that the trained model: 1) could answer counter-
factual queries about SCMs that only had noisy interventional
data; 2) developed explicit internal representations of the un-
derlying SCMs that we could manipulate with predictable ef-
fects on answers to new causal queries.

Methods
Linear Gaussian SCMs. We consider a constrained class
of linear Gaussian structural causal models (SCMs) with four
variables V1,V2,V3,V4, each taking the following form:

Ui ∼ N (0,0.1)

V j :=U j +w j j +∑
i< j

wi jV j where ∀i, j : wi j ∈ {−1,0,1}

where variable Vj is a linear combination of the background
variable U j, bias term w j j and a weighted combination of par-
ent values. We generate all possible 4-variable SCMs with
weights wi j ∈ {−1,0,1}, resulting in 59,049 SCMs (Fig. 2).
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Figure 2: A few examples of the 59,049 unique SCMs.

Generating text strings from SCMs. We use the SCMs to
generate two types of strings (Fig. 3). Each string begins with
a token that describes its type (DATA or INFERENCE), followed
by the SCM index encoded using 4 letter tokens (e.g. A R T Q
corresponds to SCM index 12002). Observation is indicated
using OBS [variable] [value] sequence, while intervention
is indicated DO [variable] [value] sequence. For DATA
strings, we sample 0-2 interventions (with values ∼ U[−5,5])
and record the sampled values under that intervention. So
DATA strings provide only noisy samples of the underlying in-
terventional distributions. For INFERENCE strings, we sam-
ple 1-2 observations (also ∼ U[−5,5]), 0-2 interventions. We
then record the analytical solution of counterfactual posterior
means and standard deviations (SDs) for each variable (see
Pearl (2009) for details on counterfactual inference). Numbers
within [−10,10] are encoded using numerical tokens with one
decimal point precision (e.g. 0.3, -8.5); numbers outside of
that range are encoded using -INF and +INF tokens. Each
string ends with an EOS token.

Training transformer to predict the next token. We train a
GPT-style transformer model with 12 layers, hidden size 512,



     DATA A R T Q DO V3 -1.5   V3 -0.9 V3 -1.5 V4 -1.3 V1 -0.3  EOS

INFERENCE C I F V  OBS V2 -0.3 DO V1 –2.0   V3 -2.6 0.3 V2 0.7 0.0 V1 -2.0 0.0 V4 3.0 0.4  EOS

Figure 3: We generate two types of strings from the SCMs. DATA strings provide interventional data about the referenced SCM.
INFERENCE strings provide examples of counterfactual inference.

8 attention heads of size 64, MLP size 2048, GELU activation
function, and ”Pre-LN” type layer normalization. We use the
standard cross-entropy objective to train the model to predict
the next token in generated text (Radford et al., 2018).

For most SCMs, the model sees both DATA and INFERENCE
strings during training. However, we also randomly select
1,000 SCMs for which the model only ever sees DATA strings.
A training epoch consisted of 10 DATA and 10 INFERENCE
strings randomly generated per SCM (excluding INFERENCE
strings for held out SCMs), resulting in around 1.2 million
strings per epoch. We trained the model for 300 epochs.

Results

Transformer generalizes to SCMs with DATA strings
only. We assessed causal inference capacity by asking
the model to complete 10,000 strings of the following form:
INFERENCE [SCM index] [observations & interventions]

[queried variable] [...] with different SCM indices and
causal queries. We then computed the mean absolute error
(MAE) between predicted mean and SD for the queried vari-
able (converting tokens to numerical values), and analytically
derived result. We also considered a naive baseline that sim-
ply predicts the average mean and average SD for all queries:

SCM instances Mean MAE SD MAE

with DATA &
INFERENCE strings

baseline 2.340 [2.306,2.375] 0.153 [0.152,0.154]

model 0.017 [0.015,0.019] 0.000 [0.000,0.000]

with DATA
strings only

baseline 2.237 [1.979,2.501] 0.156 [0.147,0.163]

model 0.016 [0.005,0.030] 0.001 [0.000,0.004]

First, the trained model achieves near optimal performance
predicting the counterfactual mean and standard deviation.
Crucially, the model generalizes to SCM instances that only
had DATA strings, ruling out the hypothesis that the model
achieves causal capacities by simply memorizing the answers
to all possible counterfactual queries. To sum up, a trans-
former trained to predict the next token can discover SCMs
from interventional data and learn to answer counterfactual
queries about those SCMs.

Overwriting ”mental” SCMs using a linear decoder. We
also wanted to investigate the internal representations that
may underpin model’s causal capacities. Inspired by (Li et
al., 2023; Nanda, Lee, & Wattenberg, 2023), we trained linear
decoders—mapping residual activations from each layer (at
the last SCM index position) to three possible values of each
weight wi j ∈ {−1,0,1}. We considered only those SCMs that
had both DATA and INFERENCE strings. We trained the de-

coders on activations from 57,049 SCMs, and report classifi-
cation accuracy on held out 1,000 SCMs (Fig. 4).
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Figure 4: Linear decoder accuracy per layer and SCM weight.

Starting around layer 5, many weights of the SCM can be
linearly decoded above chance (33%), suggesting that the
trained transformer maps the (arbitrary) SCM index to a mean-
ingful internal representation of the SCM.

Finally, we use the decoders to overwrite the internal SCM
representation. In the example in Fig. 5, we input a query
string and use gradient descent on the residual activations in
layer 3 to flip the decoder prediction and change one weight
in the represented SCM (w12 = 0 → 1). After overwriting the
activations, model prediction matches the expected analytical
result (given the same change in the ground truth SCM), sug-
gesting that the model is actually using this representation.

Query: INFERENCE A R T Q OBS V1 -0.8 OBS V4 -0.3 DO V3 0.9 [Vi] [mean prediction]
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Figure 5: Intervening on internal representation of the SCM.

Conclusion
We found that a transformer model trained on next-token pre-
diction can discover linear Gaussian SCMs from interventional
data, and that it forms explicit representations of the SCMs
which can be manipulated with predictable effects on model
output. In future work, it is important to consider other SCMs
that go beyond our toy setting. Nevertheless, our results chal-
lenge the strong claim that causal reasoning capacities cannot
emerge through statistical prediction objectives.
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