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Abstract 

This study investigates the use of Riemannian 

geometry to classify mental workload from an EEG 

dataset collected in an aeronautical context. The 

analysis, based on EEG data recorded from 16 

participants performing a Simon task, aimed to 

differentiate low and high workload conditions. 

Using covariance matrices and a Minimum Distance 

to Mean (MDM) classifier, the results demonstrate 

spatial effects of mental workload irrespective of 

the investigated spectral domain. This 

demonstrates that spatial information is distributed 

evenly across all explored frequency bands. 
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Context—Framework 
 

The increasing role of Artificial Intelligence (AI) within 

society is notably transforming various sectors, 

including aeronautics, where the integration of 

automation and embedded AI into technical-industrial 

systems is shifting the role of human operator from 

agent to controller of systems. In this context, optimizing 

the design of future systems to better align with 

operators’ needs and capabilities requires a deep 

understanding and characterization of the operator’s 

cognitive states. Electroencephalography (EEG)—a 

widely used technique for measuring brain electrical 

activity —provides valuable insights into an individual’s 

cognitive state. 

Covariance Matrices (CMs), computed on the 

EEG signals, contain discriminative spatial information, 

such as variance of recorded signals and coherence 

between pairs of channels. As Symmetric Definite 

Positive (SPD) matrices, CMs can be exploited in the 

more relevant context of Riemannian geometry to 

provide a robust state-of-the-art machine learning 

approach for classification (Barachant et al., 2011). 

This perspective enhances signal processing 

by improving robustness, accuracy, and classification 

performance, thus offering advantages over traditional  

Euclidean geometry-based methods (Congedo, 

Barachant et Bhatia, 2017).  

 

Material 
 

The study reported here was conducted using an 

existing dataset focused on mental workload within an 

aeronautical context, previously conducted at ONERA 

(the French Aerospace Lab) (Deshayes et al., in 

preparation). EEG data were obtained from 21 

volunteers who participated in different manipulated 

workload conditions. EEG signals were recorded using 

64 active electrodes (international system positioning 

10/20) with a sampling rate of 500 Hz. 

To assess mental workload, the Multi-Attribute 

Task Battery II (MATB-II) was employed (Santiago-

Espada et al., 2011). This task battery was configured 

with two difficulty levels (low and high) performed during 

separate sessions. Following the MATB-II tasks, 

participants engaged in the Simon task (Craft & Simon, 

1970). The task was administered immediately after the 

MATB-II sessions to capture the cognitive effects of the 

varying workload levels. 

 

Analysis—Algorithm  
 

The analysis was conducted on data from 16 

participants: 5 of the 21 subjects were excluded due to 

artifact rejection during the preprocessing phase. For 

each subject, EEG data were firstly pre-processed as 

follows: interpolation of bad channels, application of a 

notch filter to clean the 50 Hz band (and its harmonics), 

a high-pass filter (cut-off at 0.1 Hz), and common 

average re-referencing. Artifact correction was then 

conducted using Signal-Space Projection (SSP). 

Ocular artifacts were identified using EOG electrodes 

for blinks and AF7/AF8 EEG electrodes for saccades. 

The primary objective of the study was to 

classify mental states from EEG data between low and 

high workload over frequency sub-bands. The following 

sections will describe the proposed methodology. The 

algorithm was implemented using Python and libraries 

such as MNE (v.1.8.0) for EEG data processing, 

pyRiemann (v.0.7) for Riemannian geometry 

computations, and scikit-learn (v.1.5.1) for machine 

learning.  

 

Algorithm.  
 

Firstly, the Power Spectral Density (PSD) was 

computed on the raw data segmented into overlapping 

windows (duration = 4s, overlap = 25%) using Welch’s 

method. The spectral domain was restricted to the 

range [0.1-50] Hz. For each of these windows, CMs 

were estimated using the Oracle Approximated 

Shrinkage (OAS) method (Chen et al., 2010). Finally, 

classification was performed using the Minimum 

Distance to Mean (MDM) classifier (Barachant et al., 

2011) based on Riemannian’s metrics, and 

performance was assessed through a shuffle-split 

cross-validation scheme consisting of 20 splits with 

80% of the data used for training.  

First, we applied the proposed methodology on 

the full spectral domain [0.1-50] Hz. Then, we 

conducted a similar analysis by classifying the mental 

workload using band-pass filtered data along windowed 

signal (size 4 Hz without overlapping). Windows were 

used to study the variability of mental workload’s spatial 

signature with frequency range. 



Results 
 

Power Spectral Density (PSD).  
 

The PSD shows strong variations between conditions, 

mainly in the lower frequency ranges (α-band). In the 

high workload condition, a tendency towards decreased 

spectral power was observed in the Alpha (8-12 Hz) 

frequency band, consistent with previous findings in the 

literature (Borghini et al., 2012).  

  

 

Figure 1: Average PSD distribution for the 16 subjects 

between conditions (low vs. high) at the Pz electrode 

 

Classification scores.  
 

The classification of mental workload, based on the full 

spectral signal [0-50] Hz, achieved a mean accuracy 

level of 0.69 with a standard deviation of 0.04. 

Additionally, classification performance was 

assessed across windowed frequency sub-bands 

(windowed signal of 4 Hz) and cross-validation folds. 

We obtain a classification score identical to the one 

computed with the full frequency domain, whatever the 

sub-band used (see Figure 2 below). This demonstrates 

that the spatial signature of the workload effect in the 

brain manifests itself over the full spectrum. 

 

 
Figure 2: Distribution of classification accuracy across 

frequency sub-bands 

Discussion  
 

The application of Riemannian geometry to EEG 

covariance matrices demonstrated robust classification 

accuracy for mental workload, achieving an accuracy 

score about 70%. Which is supporting the existence of 

a spatial effect in the brain associated with mental 

workload.  

Furthermore, PSD shows a mental workload 

effect on the alpha frequency band that had been widely 

reported in the literature. 

Although amplitude variations in spectral power 

were observed, classification results did not exhibit 

significant improvements across individual frequency 

bands. This invariance in performance is attributed to 

the classification algorithm’s input employed. 

Specifically, the method relies on covariance matrices 

in a Riemannian manifold and focuses on modeling 

spatial relationships between features. This aligns with 

the brain neural networks distribution engaged during 

cognitive tasks, whose spatial dynamics are captured 

effectively by the Riemannian framework.  

 

Conclusion 
 

This study applied Riemannian geometry-based 

machine learning to classify mental workload states 

from EEG signals. To do so, we used CMs capturing 

spatial relationships in the data. Classification results 

show the presence of a mental workload effect on all 

the frequency sub-bands. In future studies we plan to 

localize the spatial sources of these effects for the 

identification of specific locations, significantly 

contributing to the classification process. 

 

Acknowledgments 
 

The authors would like to thank Office National d’Etude 

et de Recherche en Aérospatial and the Région 

Provence-Alpes Côte d’Azur for funding the Ph.D. 

thesis of Agathe Choplin. 

 

 

 

  



References  

Barachant, A., Bonnet, S., Congedo M., & Jutten, C.  

(2011). Multiclass Brain–Computer Interface 

Classification by Riemannian Geometry. IEEE 

Transactions on Biomedical Engineering, 

59(4), 920–928. 

https://doi.org/10.1109/tbme.2011.2172210 

Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., &  

Babiloni, F. (2012). Measuring  

neurophysiological signals in aircraft pilots and  

car drivers for the assessment of mental  

workload, fatigue and drowsiness.  

Neuroscience & Biobehavioral Reviews, 44,  

58‑75.  

https://doi.org/10.1016/j.neubiorev.2012.10.00

3 

Chen, Y., Wiesel, A., Eldar, Y. C., & Hero, A. (2010).  

Shrinkage algorithms for MMSE covariance 

estimation., IEEE Transactions on Signal 

Processing, 58(10), 5016-5029. 

https://doi.org/10.1109/tsp.2010.2053029  

Congedo, M., Barachant, A., Bhatia, R. (2017). 

Riemannian geometry for EEG-based brain-

computer interfaces; a primer and a review. 

Brain-Computer Interfaces, 4(3), 155–174. 

https://doi.org/10.1080/2326263X.2017.12971

92 

Craft J.L., Simon J.R. (1970). Processing symbolic  

information from a visual display: interference 

from an irrelevant directional cue. Journal of 

Experimental Psychology, 83(3, Pt.1), 415–

420. https://doi.org/10.1037/h0028843 

Deshayes C., Angelliaume S., Berberian B., and  

Ficarella S.C. The quest for a task-independent  

(neuro) physiological signature of cognitive  

fatigue. [Manuscript in preparation] 

Santiago-Espada, Y., Myer, R.R., Latorella, K.A., &  

Comstock, J.R. (2011). The Multi-Attribute 

Task Battery II (MATB-II) Software for Human 

Performance and Workload Research: A User's 

Guide. 

https://ntrs.nasa.gov/citations/201100144



 


