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Abstract 
Perceptual learning optimizes perception by 
reshaping sensory representations to enhance 
discrimination and generalization. Previous work 
has shown that learning a visual orientation 
discrimination task  reshapes the population feature 
representations in the primary visual cortex (V1) via 
suppressive mechanisms. Although the 
computational importance of these changes has not 
yet been elucidated, it has been proposed that they 
optimize the geometry of the representation to be 
readout. Are these feature-encoding changes paired 
with changes to the representational geometry? To 
answer this, we investigated the relationship 
between V1 feature representation, behavioral 
performance, and neural manifold geometry in 
trained and naïve mice. Response dimensionality 
showed increases with task difficulty but was lower 
in trained animals, suggesting that successful 
learning reduces dimensionality. Based on manifold 
capacity, dimensionality, and radius, we further 
found that representational separability is a stronger 
predictor of individual behavioral performance. 
These results confirm that learning alters the 
geometric properties as early as early sensory 
representations, optimizing them for linear readout 
and improving perceptual decision-making. 
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Introduction 
When learning a task, the representations of the relevant 
stimuli and their reading out must undergo modifications 
to optimize detection, discrimination, categorization and 
generalization. However, these mechanisms’ 
implementation remains elusive. In brains, perceptual or 
associative learning has been shown to change the 
neuronal feature representations of the relevant stimuli, 
even at early processing stages such as the primary 
sensory cortices. Training for a visual discrimination task 
alters V1 population activity by enhancing target 
encoding (Henschke et al., 2020; Jurjut et al., 2017; 

Poort et al., 2015), sparsening cue-evoked responses 
(Corbo et al., 2022; Failor et al., 2025), and increasing 
their representational separability (Poort et al., 2015, 
Corbo et al., 2025; Failor et al., 2025). How do these 
modifications of the evoked population activity support 
learning and performance in a discrimination task? In 
spite of the variability of these effects, they are 
associated with similar changes in representational 
geometry, suggesting that they take part in the same  
computational mechanisms (Cheng et al., 2025).     

For example, the manifold capacity theory 
framework (MCT; Chung et al., 2016, 2018; Chung & 
Abbott, 2021; Cohen et al., 2020), examines a system’s 
capacity to linearly separate neural representational 
manifolds, and has shown that changes in the manifold’s 
radius, dimensionality, and alignment predict the 
classification capacity of a system and its ability to 
generalize (Chou et al., 2025; Li et al., 2024). Both 
artificial (Cohen et al., 2020) and biological systems 
show that successful learning of a decision variable 
alters manifold geometry in a way that increases the 
system’s capacity (Chou et al., 2025) and favors their 
linear separability (Yao et al., 2023). However, given that 
changes in manifold capacity have predominantly been 
observed downstream of the hierarchical process, it is 
unclear whether the mouse V1 implements similar 
geometric changes in orientation representations to 
facilitate perceptual discrimination and generalization.  

Methodology 
We applied the MCT framework to calcium imaging 
datasets recorded from the mouse visual cortex V1 
(Corbo et al., 2024, 2025). The mice were either trained 
for a Go/NoGo orientation discrimination task (“trained”; 
N=10) with progressively increasing difficulty (from 0 to 
90 degrees (Fig. 1a), or passively viewed the same 
stimuli (“naive”; N=7). The effects of training on feature 
encoding are reported in Fig. 1b. 

Neural responses’ dimensionality was estimated 
using principal components analysis (PCA) and by 
visualizing the data’s lower dimensional embedding 
space with non-metric multidimensional scaling (MDS), 
t-SNE, and ISOMAP. Changes in the system’s 
representational geometry were quantified via direct 
estimation of classification capacity and numerical 
estimation of object manifold geometry (radius and 
dimension; adapted from Cohen et al. (2020)) . 
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Fig. 1. a: Experimental design. b: Results from Corbo et 
al. (2025) show that after training, the representations in 
feature encoding space are sharper and the activity is 
distributed into two discrete domains (e.g. 65° evokes 
activity at ~45° and 90°) c: Dimensionality (number of 
PCs to explain 80% of the variance) of the V1 evoked 
responses in naive and trained animals as a function of 
Go/NoGo angle. d: Dimensionality against animal 
discrimination performance (D’). e: The best and worst 
performers’ 25° of Go/NoGo angle representations 
modeled in MDS, t-SNE, and ISOMAP space. f: 
Manifold dimension, radius and classification capacity for 
naive and trained mice. g: Scatterplot of classification 
capacity vs. animal performance.  

Results 
First, to examine the dimensionality of the population 
representations, we determined the number of principal 
components necessary to explain 80% of the data’s 
variance. We found that the dimensionality of the 
responses increased with the similarity of the pair of 

stimuli in both trained and naive animals (Fig. 1c). 
Strikingly, the dimensionality was lower in animals 
performing the task, suggesting that the biological 
implementation of the task relies on reducing the 
representations’ dimensionality (Fig. 1c). 

However, while the dimensionality of responses 
to visual cues predicted task performance across 
difficulty levels, differences in dimensionality at the same 
difficulty level did not explain performance variability 
(Fig. 1d). Visualizing the best and worst performing 
mice’s go/no-go task data in embedding space showed a 
clear separation between the representational manifolds 
for the good but not the bad performers (Fig. 1e), 
suggesting differences in manifold separability despite 
similar dimensionality. This separability of manifolds was 
further evidenced by an increase of the neural manifolds’ 
capacity and a decrease of manifold dimension and 
radius (Fig. 1f) in trained mice. The increase in capacity 
was correlated to the behavioral performance of the 
animals, suggesting that it supports the learning process 
(Fig. 1g). 

Conclusion 
Taken together, our results show a relationship between 
behavioral task performance, representational 
dimensionality, and manifold separability in the early 
visual cortex of mice. As the responses’ dimensionality 
decreases, the system’s manifold capacity increases, 
leading to heightened representational separability as 
measured by numerical estimation of the manifold’s 
geometry. These results confirm that learning alters the 
geometric properties of early sensory representations as 
early as in V1, optimizing them for linear readout and 
improving perceptual decision-making. 
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