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Abstract
Understanding how cognitive load shapes human plan-
ning behavior is crucial for building AI systems that col-
laborate effectively with people. While traditional ap-
proaches to measuring cognitive load such as self-report
questionnaires or dual-task paradigms are valuable, they
often lack real-time responsiveness or introduce artificial
task constraints. This work is a proof-of-concept for in-
ferring cognitive load from deviations in planning, thus
avoiding intrusive or retrospective measures. We simu-
late user profiles performing a structured task (summariz-
ing an article), with behavioral noise introduced via rep-
etition, backtracking, pausing, and skipping actions. A
Hidden Markov Model (HMM) is used to infer latent cogni-
tive states from the resulting behavioral traces. Results
from 100 Monte Carlo trials show that the HMM reliably
recovers latent states aligned with intuitive levels of cog-
nitive load. Emission patterns are interpretable, stable
across trials, and distinct for each state, capturing prede-
termined behavioral signatures of low, medium, and high
mental effort. State assignments also show alignment
with simulated user profiles. Our approach provides a
simulation-based foundation for modeling cognitive vari-
ability and may inform future work in user modeling, The-
ory of Mind, and adaptive systems.
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Introduction
Human planning is rarely flawless. Even in structured tasks,
individuals may repeat steps, backtrack, hesitate, or skip ac-
tions. While often dismissed as behavioral noise, such de-
viations can reflect latent cognitive states, particularly men-
tal effort under uncertainty. Cognitive load theory suggests
that performance degrades under high task demands or lim-
ited working memory (Sweller, 1988). Yet most computational
models of planning assume idealized agents, overlooking nat-
ural variability in behavior (Gershman, Horvitz, & Tenenbaum,
2015; Chandramouli et al., 2024).

To support human planning, artificial systems must infer
users’ cognitive states in real-time. Theory of Mind (ToM)
- the ability to model others’ beliefs, goals, and knowledge
- has long been a cornerstone of cognitive science (Baker,
Jara-Ettinger, Saxe, & Tenenbaum, 2017) and is increasingly
vital for human-AI collaboration (Ho, Saxe, & Cushman, 2022;
ichter et al., 2023; Wang et al., 2024). We propose a com-
putational ToM approach based on inverse modeling: the sys-
tem observes user behavior and infers hidden cognitive load
states, without assuming rationality or optimality.

We formalize this process with a probabilistic generative
model. Inspired by Bayesian inverse planning (Baker, Saxe,
& Tenenbaum, 2009) and machine ToM architectures such as
ToMnet (Rabinowitz et al., 2018), we treat the user as a noisy
planner whose internal state shapes behavioral patterns. A

Hidden Markov Model (HMM) is used to infer latent cognitive
states from observed behavior, in a framework that is both
tractable and interpretable.

Methods
To motivate further design and human data collection, we be-
gin with simulation. In robotics, complex behaviors in tasks are
devised into high-level plans; we adopted a similar approach
to model writing by defining an ideal five-step plan: ["read",
"extract", "write", "revise", "submit"]. We can
imagine that individuals might follow distinct trajectories or ex-
hibit characteristic behavior patterns, or profiles, during task
execution. Six profiles — overconfident, efficient, cautious,
self-correcting, novice, and anxious — were simulated by
varying parameters for repetition, backtracking, pause dura-
tion, variability, and skipping (Lieder & Griffiths, 2020). This
provides a scaffold for developing interactive systems that an-
ticipate user needs based on observed actions. This idea
also parallels sparse sampling strategies used in near-optimal
planning under resource constraints (Kearns, Mansour, & Ng,
2002).

Each simulated user yielded a six-dimensional behavioral
vector (e.g., repeat count, total pause time, skip count), which
were standardized before modeling. We then use a Gaus-
sian HMM with three latent states (low, medium, high load)
and full covariances. Each model was trained for up to
1,000 iterations. To ensure generalization, we applied 5-fold
cross-validation within each Monte Carlo trial and selected the
model with the highest held-out log-likelihood. Trials with con-
vergence failures were excluded. We simulated up to 100 tri-
als, retaining at least 20 valid runs for statistical reliability.

Results
The HMM demonstrated strong performance across trials,
with a mean cross-validated log-likelihood of 989.47±417.41,
indicating a robust fit to simulated behavioral data. Chi-square
tests of independence on the profile-to-state assignments re-
vealed highly significant association (χ2 = 1092.58±157.15,
p < 0.0001 in all trials), confirming that latent states system-
atically reflected the underlying cognitive profiles rather than
random variation. The consistent significance rate (100% of
trials with p < 0.05) further supports the model’s stability and
interpretability as a discriminator of cognitive load.

Emissions represent the observable behavioral features as-
sociated with each hidden state which are shown in Figure 1.
As expected from the simulation parameters, most behav-
ioral features such as repetition, backtracking, and pausing
increase from the Low to High load states. This reflects our
design assumption that higher cognitive load manifests as
more effortful behavior. Skipping, in contrast, decreases un-
der higher load, consistent with reduced planning flexibility un-
der mental strain.

Figure 2 shows the alignment between cognitive profiles
and latent states. Overconfident users map primarily to Low
cognitive load, while novice and anxious users align with High



Figure 1: Emission means across latent states. Features such as repetition, pausing, and overloads increase from Low to High
cognitive load, while skipping decreases.

Figure 2: Profile-to-state mapping across trials. Overconfident users are aligned with Low load states, while novice and anxious
users align with High. The rest are aligned with Medium.

load as expected. Cautious and self-correcting profiles tend
to fall in the Medium range. Efficient users, however, show
a broader distribution, with many aligning to Medium load.
These associations are consistent across Monte Carlo trials.

Finally, Figure 3 summarizes latent state dynamics. Initial
state probabilities (Figure 3a) show a modest bias toward the
Medium load state at sequence onset, though all three states
are represented. Transition probabilities (Figure 3b) reveal
strong persistence within each state, with high self-transition
likelihoods for Low, Medium, and High. Cross-state transitions
are relatively rare, suggesting that cognitive load levels remain
stable over short time spans.

(a) Initial state probabilities
across models. A modest bias
toward the Medium load state is
observed, though all three states
are represented across trials.

(b) Transition probabilities be-
tween latent states. Each state
shows high self-transition likeli-
hood, indicating behavioral stabil-
ity within cognitive load levels.

Figure 3: Latent state dynamics across trials.

Discussion
Our findings show that latent cognitive states can be inferred
from structured deviations in planning behavior, supporting
the use of HMMs as real-time inverse models of user cog-
nition, akin to lightweight computational ToM (Akyürek, 1992).
Rather than assuming rational planning, we model bounded
agents whose behavioral irregularities reflect internal pres-
sures like uncertainty or fatigue. While not classical inverse
planning which presumes optimality, our approach shares the
goal of inferring hidden states from observed behavior. Fu-
ture work should examine model selection and profile-specific
modeling errors to refine inference.

This simulation-based framework enables controlled ex-
perimentation but cannot capture the full complexity of hu-
man cognition. Validation with human participants is needed,
comparing inferred states with measures such as NASA-
TLX (Hart & Staveland, 1988), pupillometry, or neuroimag-
ing. In particular, linking state transitions with pupil dilation or
prefrontal activity (Garrett, Epp, Kleemeyer, Lindenberger, &
Polk, 2020) may ground our inferences in neurocognitive pro-
cesses. While we model discrete states, cognitive load likely
varies continuously, and future models may benefit from hy-
brid or continuous-state representations.

Simulation is only a starting point. Real-world plans and
profiles will differ across tasks, depending on what users op-
timize for (e.g., speed, creativity). Meaningful plan and profile
discovery requires extensive observation of human behavior,
and this behavioral grounding is essential for the validation
steps above. Future work should attend to elements under-
played in the current simulation, such as goal variability or fea-
ture interactions, that may be key for adaptive system design.
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