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Abstract
Shepard’s (1987) universal law of generalization states
that generalization strength decays as a concave func-
tion of stimulus distance in psychological space. While
widely supported in biological systems, its relevance to
artificial neural networks remains unclear. We tested this
law across 26 diverse deep vision models using human
similarity judgments of naturalistic images. Across mod-
els, embedding distances produced concave generaliza-
tion gradients and aligned closely with human psycho-
logical spaces. To examine the role of semantic con-
tent, we analyzed model gradients across network depth
and compared gradient shapes to human-derived bench-
marks. Language-aligned models most closely resem-
bled human data, suggesting semantic representations
contribute to model-human alignment. Our findings ex-
tend Shepard’s law to modern artificial systems, provid-
ing further evidence for its universality. They also high-
light deep vision models as compelling proxies for psy-
chological space, providing a novel framework for as-
sessing representational alignment between artificial and
human cognition.
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Introduction
Generalization is a fundamental challenge for information pro-
cessing systems. Consider a bird that preys on a bumble-
bee and is stung; to avoid repeating this, it must generalize
from this experience to identify similar organisms. This ne-
cessity for generalization, however, can be exploited, as seen
with harmless hoverflies mimicking bumblebees (Edmunds &
Reader, 2014). Similarly, artificial systems like convolutional
neural networks face the challenge of generalization when
classifying novel images, needing to learn useful represen-
tations from varied pixel-level inputs. The broad scope of
this challenge motivates the search for unifying principles, no-
tably Shepard’s (1987) universal law of generalization. Shep-
ard proposed that generalization strength between two stim-
uli decays as an invariant, concave function of their distance
in ”psychological space”. While not directly observable, this
space is often studied using non-metric multidimensional scal-
ing (NMDS) on similarity data (Shepard, 1962). Extensive
empirical work supports Shepard’s law in living organisms, in-
cluding recent studies using naturalistic images (Ghirlanda &
Enquist, 2003; Marjieh et al., 2024; Shepard, 1987).

If truly universal, this law should also apply to artificial in-
formation processing systems. Although theoretical accounts
support this universality (Chater & Vitányi, 2003; Frank, 2018;
Shepard, 1987; Sims, 2018; Tenenbaum & Griffiths, 2001),
prior empirical tests in artificial systems are scarce and incon-
clusive (Rustom, Öğmen, & Yazdanbakhsh, 2022; Serrano &
Miralles, 2023). Deep neural networks (DNNs) demonstrate
high performance in computer vision (LeCun, Bengio, & Hin-
ton, 2015; Kheradpisheh et al., 2016; Russakovsky et al.,

2015) and exhibit representational parallels with biological vi-
sion (Cichy et al., 2016; Khaligh-Razavi & Kriegeskorte, 2014;
Muttenthaler et al., 2023; Rajalingham et al., 2018; Sucholut-
sky et al., 2023; Yamins et al., 2014). Importantly, prior work
has shown that the representational geometry of DNN embed-
ding spaces is predictive of human similarity judgments and
can even be finetuned (Jha, Peterson, & Griffiths, 2023; Pe-
terson, Abbott, & Griffiths, 2016, 2018). Nevertheless, DNNs
substantially differ from human visual cognition in a number
of ways, including their respective strategies in object recog-
nition tasks (Bowers et al., 2023; Linsley et al., 2023). Hence,
it remains unclear if the internal embedding spaces of DNNs
can serve as viable models for psychological space.

Here, we evaluate this possibility, specifically asking
whether distances in the embedding spaces of DNNs predict
human similarity judgments via a concave generalization gra-
dient. We selected diverse deep vision models and utilized
a large dataset of natural images with human similarity judg-
ments (Peterson et al., 2018). By extracting image embed-
dings and computing pairwise distances, we obtained model-
derived distances corresponding to human similarity scores,
allowing examination of the resulting generalization gradients.
To our knowledge, no prior study has tested Shepard’s law
across many modern deep vision architectures under large-
scale, naturalistic conditions. We present evidence that the
internal representations of deep vision models adhere to the
universal law of generalization, validating Shepard’s law as
universal and providing a novel alignment measure between
neural network and human representations.

Methods & Results

Dataset and Model Selection

We examined whether internal embedding spaces of deep vi-
sion models follow Shepard’s law, which states that general-
ization strength decreases as a concave function of stimulus
distance in psychological space. We used a naturalistic image
dataset collected by Peterson et al. (2018), comprising human
similarity ratings (reported from 0-10 and then scaled to 0–1)
for six diverse categories containing 120 images each: ani-
mals, automobiles, fruits, furniture, various, vegetables. Prior
analyses using NMDS verified Shepard’s law for a subset of
these category sets (Marjieh et al., 2024). We replicated these
results and extended them to the remaining category sets.
Then, we selected 26 pretrained vision models covering a di-
verse set of model families that varied in architecture, training
task and data, and parameter count (CLIP, DINO, DINOv2,
DreamSim, Open CLIP, ResNet, SimCLRv2, ViT, VGG) to as-
sess representational generalization broadly. We additionally
chose pixel-level MSE as a baseline model of low-level per-
ceptual distance.

Embedding Extraction and Gradient Computation

We extracted image embeddings from each model’s final
hidden layer, selecting classification tokens for transformer-
based architectures. Then, we computed the pairwise cosine



distances between embeddings and normalized them to 0-
1.2 Finally, we matched the human-evaluated similarity score
for each image pair with its associated cosine distance in
model embedding space, yielding a similarity-distance tuple.
Given sparse sampling at high similarity levels, we grouped
the similarity-distance tuples into 100 equal bins and com-
puted one averaged similarity-distance value within each bin
to stabilize gradient estimates.

Curve Fitting and Evaluation
To quantitatively test adherence to Shepard’s law, we fit
four curve types (linear, quadratic, exponential, Gaussian) to
the binned generalization gradients using a 5×5-fold cross-
validation procedure. Nonlinear fits consistently outperformed
linear fits across models (see Fig. 1 for example). The Gaus-
sian curve yielded the best fits overall, with significantly lower
error and higher explained variance (R2 = 0.856, RMSE =
0.065, ∆BIC = −66.9 compared to linear). Furthermore,
quadratic curves independently confirmed concavity (positive
second derivatives) in 84% of fits. These results strongly
support Shepard’s law across models. Notably, no nonlinear
curve reliably provided improved fits across all image datasets
for gradients computed using the pixel-level MSE model.
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Figure 1: Example gradients for the ”fruits” image set. Both
the NMDS-derived gradient (left) and the CLIP ViT-B/16-
derived gradient (right) clearly show concavity.

Psychological Space Alignment
To determine if embedding spaces aligned structurally with
psychological space, we regressed human similarity-derived
NMDS distances onto corresponding model-derived cosine
distances. Regression analyses, combined across models
via random-effects meta-analysis, showed strong represen-
tational alignment, with model distances explaining 87.1%
of variance (pooled slope = 0.802, intercept = 0.080, r2 =
0.871). Thus, model embeddings proved effective proxies

2While prior work has mainly relied on Euclidean distance as a
measure of distance in psychological space (Marjieh et al., 2024;
Shepard, 1962, 1987), we used cosine distance in our analyses be-
cause it is standard practice in computer vision and has been shown
to predict human similarity judgments (Fu et al., 2023; Radford et al.,
2021; Roads & Love, 2021). Nevertheless, we also performed all
analyses using Euclidean distance, yielding comparable results.

for psychological spaces underlying human judgments. The
pixel-level MSE model did not exhibit high predictive strength,
with only 8% variance explained.

Influence of Semanticity

To assess the influence of semantic content on generalization
gradients, we first evaluated generalization gradients across
all VGG11 layers. Strong nonlinear curve fit improvements
only reliably emerged in the final four hidden layers, reflect-
ing diminished influence of low-level perceptual features and
potentially increased semantic content relevant to human cat-
egorization (Cohen et al., 2020; LeCun et al., 2015; Sucholut-
sky et al., 2023). To further quantify the role of semanticity,
we conducted bootstrapping (10,000 samples, with replace-
ment) for each model-derived gradient and the NMDS-derived
gradient, fitting exponential curves to each bootstrap sample.3

Comparing exponential coefficient distributions (a, b; exclud-
ing offset c due to its weaker relevance for gradient shape)
via KL divergence, language-aligned models CLIP and Open
CLIP consistently ranked among the models closest to human
data, suggesting possible contributions of semantic alignment
to generalization patterns. However, gradients based solely
on word embeddings of category labels (e.g., ”Tiger”) exhib-
ited concavity but substantially weaker fits and lower regres-
sion alignment, indicating that purely semantic category struc-
ture may be relevant but insufficient for fully capturing human
similarity structure.

Conclusion

We demonstrated that embedding spaces from diverse deep
vision models adhere robustly to Shepard’s universal law
of generalization, with human-evaluated similarity declining
as a concave function of model-derived stimulus distance.
This alignment holds across multiple model architectures and
training paradigms, highlighting that modern artificial systems
share fundamental representational properties with human
psychological spaces. Moreover, we found that semantic rep-
resentations may play an important role in this alignment. Our
approach provides a novel framework for assessing the rep-
resentational alignment between deep neural networks and
human psychological spaces, opening new avenues for inter-
pretability and cognitive model evaluation.
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