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Abstract 
Naturalistic behaviour involves complex 
problems with multi-step actions, making 
searching for a solution challenging. Despite this 
hurdle, human planning is efficient—it frugally 
deploys limited cognitive resources—and 
flexible—adapting to novel problems. Recent 
work suggests that humans reason about difficult 
decisions by constructing simplified 
representations of their environment. However, 
how these simplified representations are 
constructed remains unknown. Here, we 
characterize how visual attention controls which 
aspects of a scene enter a task representation for 
use in planning. When task-relevant information 
is spatially confined to a visual hemifield, people 
can more easily construct simplified and useful 
task representations. Inspired by the ‘spotlight of 
attention’ analogy, we incorporate the effects of 
visuospatial attention into a novel computational 
model of constructing task representations for 
planning. Together, our work bridges 
computational models of decision-making and 
perception to better understand how individuals 
represent their environments in aid of planning. 
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Introduction 
Humans have an impressive ability to plan. Yet, even 
simple decisions involve myriad potential actions, which 
makes systematically evaluating every possible option 

impossible (Callaway et al., 2022; Huys et al., 2012; 
Newell & Simon, 1956). Explaining how humans 
efficiently and flexibly plan under these circumstances 
has been a long-standing challenge for researchers who 
aim to understand human intelligence and replicate it with 
machines (Griffiths et al., 2019; Hassabis et al., 2017). 

Previous work (Daw et al., 2005; Dezfouli & 
Balleine, 2013; Keramati et al., 2016; Kool et al., 2016) 
has largely assumed that a decision-maker has a fixed 
representation of the problem. A recent model challenges 
this work and proposes that a value-guided process is 
involved in constructing the representation over which 
planning takes place (Ho et al., 2022). The value-guided 
construal model (VGC) suggests that an ideal, cognitively 
limited decision-maker selects a manageable subset of 
information over which to plan (i.e., task representation) 
(Ho et al., 2022). However, how these simplified 
representations are constructed remains unknown. 
Despite pioneering efforts to incorporate attentional 
constraints into models of decision-making (Ho et al., 
2022; Niv, 2019), we lack a basic understanding of how 
attention influences planning. Here, we demonstrate how 
visual attention controls which aspects of a task 
representation enter subjective awareness for planning. 

Methods 
Experimental Task. Participants (experiment 1: 
N=194; experiment 2: N=161; experiment 3:  N=35) were 
asked to navigate through a series of mazes to a goal 
using the arrow keys (Ho et al., 2022) (see Figure 1, top 
panel). At the end of each trial, participants rated their 
awareness of obstacles using a nine-point scale. See (Ho 
et al., 2022) for details.  

For the in-person experiment sample, mazes had 
task-relevant stimuli either i) lateralized to a single 
hemifield, or ii) equally distributed across space. 
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VGC model. We fit the previously described VGC 
model to our maze stimuli (Ho et al., 2022). Briefly, this 
model holds that a decision-maker combines a subset of 
cause-effect relationships to represent their environment 
in aid of planning. This simplified representation 
maximizes the value of the representation (VOR) while 
also minimizing the cognitive cost of keeping information 
in mind: 

 
VOR(c) = U(πc) − C(c). 

where c is a specific task representation (i.e., construal), 
U(πc) is the utility of a construed plan πc, and C(c) 
represents the cost of keeping that information in mind. 

The optimal task representation is selected 
according to a SoftMax decision rule. We compute a 
marginalized probability for each obstacle in the maze 
being included within a construal, P(Obstaclei), and 
include it as a predictor of participants’ awareness 
reports. See (Ho et al., 2022) for a detailed explanation of 
the computational model.  
Lateralization index. To test for effects of spatial 
attention on construal we developed a lateralized index of 
task-relevance. We divided each maze into a right and left 
hemifield and computed the ratio of task-relevant 
obstacles on both sides. We tested whether the 
lateralization index moderated the relationship between 
the VGC model predictions and participants’ reports using 
a hierarchical linear regression model.  
Attention spotlight model. Inspired by previous 
literature comparing visuospatial attention to a spotlight 
that moves across the visual field, we developed an 
extension of the VGC model to account for the effects of 
attentional selection in forming task representations.  

To do this, we recomputed the P(Obstaclei) as a 
weighted average of its neighbours, within 3 squares 
(Manhattan distance) away from obstaclei.  The distance 
of 3 squares reflects the ‘width’ of the attentional spotlight 
and was chosen based on the median distance between 
neighbouring obstacles. 

Results 
We observed a significant moderation effect whereby the 
greater lateralization of task-relevant information across 
the vertical meridian, the better the VGC model predicted 
participants’ awareness reports (βinteraction = 0.01, SE = 
2.65*10-3, 95% CI [0.01, 0.02], pFDR< 0.001). We 
replicated these findings in a re-analysis of previous data 

(Ho et al., 2022) (pFDR< 0.01). These results indicate that 
participants’ representations are more closely aligned 
with the ideal observer (i.e., the VGC model) when task-
relevant information is presented unilaterally.   

Notably, these filtering effects of attention on 
value-guided construal are not part of the original VGC 
model. We explicitly incorporate the influence of a 
spotlight of attention in a computational model of planning 
and observed that the attentional spotlight model 
predicted participants’ awareness reports better than the 
original VGC model (exp. 1: ΔBIC= 84.63; exp. 2: ΔBIC= 
203.43; exp. 3: ΔBIC= 70.72). This significant 
improvement in model fit was exclusively observed for 
non-lateralized maze stimuli (ΔBIC= 161.93), which 
suggests that the spotlight model is particularly useful in 
improving our ability to explain human behaviour in 
situations when attentional filtering is more complex. 

 
Figure 1: Lateralization of task-relevant information 

affects task representations. 

Discussion 
We shed light on multi-step decision-making by 
clarifying the role of visuospatial attention in forming 
simplified perceptual representations to aid in 
planning. We build on previous work and develop a 
computational model which explicitly incorporates the 
role of attention in value-guided construal. Our model 



bridges the literature on perceptual attention and 
computational models of planning to provide a more 
complete computational account of human cognition. 
We believe these results can inform future research 
on interactions between perception and cognition, 
and inspire novel biologically-informed intelligent 
algorithms. 
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