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Abstract 
Within a fraction of a second, we detect faces in 
our environment. How is this remarkably fast 
process implemented in the brain, and is it 
modulated by top-down mechanisms? Here, we 
used electroencephalography (EEG) to probe how 
prior scene context shapes temporal dynamics of 
neural face representations in natural settings. 
Participants viewed images of natural scenes 
containing a single face (on the left or right) that 
followed either a faceless preview (preview 
condition) or a gray screen (no-preview condition), 
while performing a face detection task (~10% 
foils). Using MVPA decoding, we were able to 
decode the face location (left vs. right) shortly 
after target onset. Critically, decoding accuracy of 
face location was initially higher in the preview 
condition, while the no-preview condition showed 
increased accuracy at later processing stages. 
Moreover, time-frequency analyses showed an 
enhanced decodability of face location in the 
preview condition in the alpha band (8–13 Hz), 
consistent with enhanced spatial orienting. Our 
findings suggest that prior scene context 
modulates face detection via distinct neural 
mechanisms that affect both bottom-up sensory 
integration and top-down spatial attention, thereby 
highlighting the dynamic interplay between 
contextual cues and neural processing.  

Keywords: face perception; time-frequency 
analysis; top-down processing; MVPA; EEG  

Introduction 
Humans rapidly and accurately detect faces across 
diverse scenes (Bindemann & Lewis, 2013). Saccades 
to faces can occur as early as 100 ms after stimulus 
onset, faster than to any other object category 
(Crouzet et al., 2010; Martin et al., 2018). Such rapid 
performance reflects the efficiency of our visual 
system, which relies on both bottom-up sensory input 
and top-down influences. While bottom-up processing 
is mainly driven by immediate sensory information, 
top-down processing incorporates expectations, task 
demands, and prior knowledge. Yet, does the rapid 
and automatic nature of face detection preclude the 
influence of top-down processes? Indeed, it has been 
argued that rapid face detection might be minimally 
influenced by top-down factors, such as scene context 
(Crouzet & Thorpe, 2011). In contrast, recent evidence 
suggests that prior information impacts face perception 
(Garlichs & Blank, 2024; Mares et al., 2024; 
Tasliyurt-Celebi et al., 2024). Thus, face detection is 
not only a fundamental perceptual skill but also an 
ideal paradigm for examining the dynamic interplay 
between bottom-up and top-down processes. 

Here, we combine MVPA decoding with 
high-temporal-resolution EEG to probe the neural 
mechanisms underlying rapid face detection. By 
modulating the presence of prior scene context, we 
address two key questions: (i) Does prior scene 
context modulate neural representations of faces 
during detection? and (ii) Which neural mechanisms 
underlie the dynamic interplay between bottom-up and 
top-down processing in face detection? 

Methods  
Task procedure. To examine how prior scene context 
affects the neural mechanisms of face detection, we 
measured EEG responses during a face detection 
experiment (N=44). We curated a large set of 784 
natural scene images, each featuring a single target 
face (left or right) and created faceless counterparts 
(preview) by manually editing out both the face and 
body. To control for face location, all images were 
mirrored, and the use of which version as preview 
versus no-preview was counterbalanced. In each trial 
(Fig. 1), participants viewed either a scene preview 
(preview condition) or a gray screen (no-preview 
condition) for 250 ms before the target scene was 
presented. The experiment also included 200 foil trials 
(no face), during which participants pressed a button; 
these trials were excluded from further analyses. 

 

 
Figure 1: EEG face detection task (N=44). 

EEG data processing. EEG data were recorded 
using an Easycap system with 64 channels and a 
Brain Products amplifier at a sampling rate of 1000 Hz. 
AFz served as the ground electrode, while Fz was 
used as the reference. Data were bandpass filtered 
between 0.1 and 40 Hz and then segmented into 
epochs ranging from –100 ms to 1100 ms relative to 
target onset, with baseline correction applied using the 
between –100 to 0 ms pre-target interval. Independent 
component analysis (ICA) was conducted to isolate 
and remove eye movement artifacts through visual 
inspection. 

Decoding analyses. We applied MVPA to extract 
temporal information about face location from the EEG 
data at the subject level. To increase reliability, we 
constructed pseudo-trials at each time point, averaging 



the data within the same location (left vs. right) and 
condition (preview vs. no-preview) into 10 folds. For 
evoked responses, each pattern consisted of the 
sensor activations for one pseudo-trial and one 
condition computed using a sliding window of 50 ms 
width with a 5 ms resolution to enhance the 
signal-to-noise ratio. In addition, time-frequency 
analysis was performed using a Morlet wavelet 
transformation (6-cycle length) to extract activity in the 
theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz) and 
gamma (31–100 Hz) bands over the interval –100 to 
1100 ms relative to target onset. Frequency-resolved 
data were then averaged across all frequencies and 
electrodes. For both analyses, linear support vector 
machine (SVM) classifiers were trained within each 
condition using 10-fold cross-validation to decode face 
location (left vs. right), and decoding accuracy was 
evaluated against chance level using sign permutation 
tests (10,000 iterations). All analyses were conducted 
using the MNE Toolbox in Python.  

Results 

We successfully decoded face location from evoked 
responses shortly after target onset and throughout 
the trial duration (preview: max. decoding accuracy of 
58.3% at 146 ms; no-preview: max. decoding accuracy 
of 59.5% at 442 ms; Fig. 2A). Crucially, decoding 
accuracy was higher in the preview condition at early 
stages (171–292 ms, d = .480), whereas the 
no-preview condition showed greater accuracy at later 
stages (392–1040 ms, d = .580). This pattern suggests 
early facilitation by scene previews, followed by a 
compensatory processing in the absence of prior 
context.  

Time-frequency decoding revealed higher 
decoding accuracy in the preview condition in the 
alpha band (8–13 Hz; 322–553 ms; d = .422; Fig. 2B), 
with a similar effect in the beta band (14–30 Hz; 
397–497 ms), consistent with top-down spatial 
orienting. In contrast, face location could not be 
reliably decoded from theta or gamma band activity. 

  

 
Figure 2: Time-resolved face location decoding 
accuracy based on evoked responses (A) and alpha 
frequency band (B) relative to target onset in the 
preview (red) and no-preview (yellow) condition. Red 
yellow horizontal lines: significant clusters, black 

horizontal lines: significant difference clusters (p < 
0.05, sign permutation test). Shaded areas: SEM. 
Gray dotted horizontal lines: chance level. 
 

Discussion 

Our findings show that prior scene context enhances 
neural representations of faces at early processing 
stages—within the first 300 ms after target stimulus 
onset. This early enhancement in the preview 
condition suggests that top-down mechanisms, likely 
mediated by prior expectations and contextual cues 
(Garlichs & Blank, 2024; Manes et al., 2024), rapidly 
facilitate face processing. Interestingly, this top-down 
modulation is also reflected in the alpha and beta 
band, with enhanced decodability from around 300 to 
500 ms. This finding is consistent with studies linking 
alpha activity to top-down processes (Stecher et al., 
2025) and an enhanced spatial orienting effect which 
follows the earlier enhancement of location decoding 
for the target face (Battistoni et al., 2020). In contrast, 
the no-preview condition elicited a stronger face 
representation at later processing stages, which might 
reflect an increased reliance on bottom-up sensory 
integration in the absence of contextual cues. 

These findings inform broader questions about 
the dynamic interplay between bottom-up and 
top-down processing in visual perception (Peters et al., 
2024). The observation that top-down influences are 
integrated into the rapid feedforward sweep of 
information processing is consistent with recent 
computational models where top-down predictions are 
continuously compared with incoming sensory 
evidence (e.g., Spratling, 2017). 

Furthermore, our results have implications for 
computational models of face perception. Many 
state-of-the-art deep neural networks for face 
perception operate primarily on a feedforward basis 
(van Dyck and Gruber, 2023; O’Toole and Castillo, 
2021), often lacking mechanisms for incorporating 
context. Our results highlight the potential benefits of 
integrating recurrent or feedback connections into 
these computational models (Kar et al., 2019; 
Kietzmann et al., 2019, Tugsbayar, et al., 2024). 

In sum, our findings not only advance our 
understanding of the neural mechanisms underlying 
face detection but also emphasize the importance of 
prior contextual information in shaping perceptual 
processes, thereby offering powerful constraints on 
computational models of human visual perception. 
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