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Abstract 
The human visual stream adapts to process letters 
and words at different processing stages (Vinckier et 
al., 2007), even when the stimuli do not share 
canonical script features, like Braille (Cerpelloni et 
al., 2024). This supports an interactive account of 
the Visual Word Form Area (VWFA). Here we expand 
these findings to test the organization of peculiar 
visual features in computational models. By training 
a benchmark convolutional neural network (AlexNet) 
to classify words in the Latin script (literacy) and 
then in the Braille script (expertise), we model the 
processing of reading visual Braille and explore the 
network’s representations at different stages. We 
observe a similar degree of clustering between 
models before and after training on Braille. The lack 
of alignment between the visual processing of the 
computational models and the effect of expertise 
highlighted by neural data suggests that the 
fundamental processing of reading cannot be fully 
explained by the visual characteristics of the script, 
but necessarily relies on other mechanisms, among 
which language connections. 
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Introduction 
In humans, the Visual Word Form Area (VWFA) 
supports the processing of written scripts (Cohen et al., 
2002). Models of how VWFA acquire its selectivity for 
orthography either emphasise the progressive 
integration of line-junctions (Bola et al., 2017; Szwed et 
al., 2009, 2011) happening in the visual stream and 
culminating in these region (Dehaene et al., 2005; 
Vinckier et al., 2007) or instead the connectivity of this 
area with the language network (Price & Devlin, 2003; 
Saygin et al., 2016; Wang et al., 2022). Recently, 
high-resolution 7T fMRI has found that VWFA 
represents different scripts with multiple sub-patches 
(Zhan et al., 2023). Moreover, the multivariate pattern 
analysis of different scripts (Latin-based and Braille) 
shows similar coding principles based on the statistical 
regularities of the stimuli, but relying on a segregated 

organization of scripts in VWFA and across the visual 
stream (Figure. 1; Cerpelloni et al., 2024). 

We adapted recent computational studies, which 
explored the visual representations of letters (Janini et 
al., 2022) and created synthetic models of the visual 
stream to read words (Agrawal & Dehaene, 2024; 
Hannagan et al., 2021), to test the impact of expertise 
with visual features in processing Braille. We trained 
AlexNet (Krizhevsky et al., 2017) models to process 
Latin alphabet and then Braille words, paralleling expert 
visual Braille reading. We observe that the statistical 
regularities of the stimuli, but not the training, explain the 
increased clustering of representations of Braille script. 

 

  
Figure 1: Neural organization of visual Braille. 
Pairwise decoding accuracies for the neural activation 
of expert visual Braille readers and naïve controls in 
VWFA and V1. When a participant was able to read the 
script, the linguistic information can be decoded. In V1, 
decoding of Braille stimuli is possible for naïve 
participants too, but much weaker than in experts. 

Methods 
Stimuli 
For training, we replicated the stimulus set used by 
Agrawal and Dehaene (2024) with CORnet models. We 
included one thousand Dutch words in four font 
variations of the Latin alphabet (Arial, Times New 
Roman, American Typewriter, Futura) and then in the 
Braille alphabet; five variations in size; eleven and five 
variations on the x and y axes respectively. Similarly to 
Cerpelloni and colleagues (2024), we developed a test 
set of real words (from the training set), pseudo words, 
non words, and a fake script condition in both the Latin 
(Arial) and the Braille scripts (Figure 2), to test the effect 



of the statistical regularities that differentiate these 
conditions at different stages of the network. All stimuli 
underwent the same size and position variations of the 
training set. 
  

 
Figure 2: Example of stimuli used in the test set, 
with 4 conditions: Real words possess a lexical entry 
(output node), high-frequency phonological units, 
orthography. Pseudo words do not possess a lexical 
entry; non words are not made of frequent 
phonological units; fake script is composed out of the 
same lines of non words but arranged in a novel 
structure. 

Networks, training, analyses 

We used five instances of AlexNet previously trained on 
ImageNet (Krizhevsky et al., 2017). After resetting the 
last layer’s weights, we trained the networks to classify 
Dutch words in the Latin alphabet (literacy acquisition; 
network naïve to Braille) and, in a second step, added 
the same words presented in the Braille alphabet and 
mapped to the same output units (expert network). 

We extracted the activations from the networks’ 
ReLU stages at the last epoch of training, presenting 
the test set of stimuli. We then computed the Euclidean 
distance between stimuli (across their variations) 
following the methods of Janini and colleagues (2022) 
for the identity of Latin alphabet letters. We used the 
resulting dissimilarity matrices (RDMs) to compute a 
measure of the clustering of representations (average 
dissimilarity between conditions minus the dissimilarity 
within conditions, divided by the average dissimilarity) in 
the four different conditions (words, pseudowords, 
nonwords, and fake script) at different processing 
stages. 

Results 
We extracted the network’s representations for Braille  
in AlexNet models expert or naïve to visual Braille 
(Figure 3A). We observe a main effect of the layer (p < 
0.001) and no general difference between expertise 
level of the networks (p = 0.8). We do note a significant 

interaction between the factors (p < 0.001), to be 
attributed to the differences in the last convolutional 
layer and in the last fully connected layer (Figure 3B). 
  

 
Figure 3: Clustering of dissimilarity between layers 
across AlexNet expertise. A. Comparison of the 
degree of clustering between networks trained on 
Braille or naïve to it. Shaded area indicates 95% 
confidence interval. B. Representations at crucial nodes 
of the networks. Colorbars indicate category 
dissimilarity within a network / layer  

Conclusions 
Overall, this preliminary result indicates that visual 
strategies to process Braille in artificial networks lead to 
a similar clustering of stimuli with different statistical 
regularities (linguistic properties), independently of 
whether or not the visual network was trained with 
Braille. Such similarity is at odds with the neural data 
that showed a strong difference in neural encoding as a 
result of expertise (Cerpelloni et al., 2024). Here we 
assume that the clustering index should show a similar 
pattern as the decoding approach used with fMRI, as a 
strong decoding requires clustering. This discrepancy 
hints at a possible role of linguistic processing in the 
visual brain, given that such processing is not included 
in visual artificial networks. Further simulation studies 
will pinpoint the necessary and sufficient conditions to 
reproduce the effect of expertise in the human brain. 
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