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Abstract

A key challenge for reliably treating psychiatric disorders
such as depression through deep brain stimulation (DBS)
is characterizing the individual brain responses to electri-
cal stimulation over the target stimulation space. Here, we
propose the high-entropy stimulation paradigm that can
sample from a wide array of spatiotemporal patterns, and
explore a much larger and more natural portion of the stim-
ulation space than conventional piecewise constant pulse
trains. We used the high entropy stimulation paradigm
to stimulate a patient with treatment-resistant depression
who had implanted DBS electrodes, using a custom-built
GUI, and the patient’s ongoing brain activity was recorded
using intracranial stereo encephalogram (sEEG). We show
that the stimulation modulates the responses along a low-
dimensional manifold spanned by the evoked responses
in pre-frontal brain regions. Overall, by generating richer
and more natural patterns of electrical stimulation, the pro-
posed high entropy stimuli are useful to efficiently probe
the influence of external stimulation on brain states.

Keywords: High entropy stimulation, Cox process, Deep brain
stimulation, Treatment-resistant depression

Introduction
Deep brain stimulation (DBS) is increasingly being used to
treat mood disorders such as Treatment Resistant Depression
(TRD) and Obsessive Compulsive Disorder (OCD) (Sheth &
Mayberg, 2023). It involves stimulating implanted electrodes
in the brain, connected to a surgically-implanted, battery pow-
ered pulse generator. In the clinical setting, the DBS param-
eters – amplitude, pulse width, frequency, and contact con-
figuration – are empirically adjusted. However, the number of
possible parameter combinations grows exponentially making
the exploration of this high-dimensional space intractable.

In this work, we propose a high-entropy electrical stimula-
tion paradigm that can sample from a wide array of spatiotem-
poral patterns, and explore a much larger and more natural
portion of the stimulation space than conventional piecewise
constant pulse trains. We created stimulation sequences with
flexible spatio-temporal correlations across DBS channels, al-
lowing the contact configuration to change over time (see ex-
ample in Figure 1a). We generalized the approach in (Krumin
& Shoham, 2009) to draw samples from a generalized Cox
process that results in continuous time-varying pulse rates
and a continuous spectrum of interval distributions from pe-
riodic to Poisson to bursty. In the following, we demonstrate
the efficacy of the proposed stimulation paradigm in charac-
terizing the stimulation-driven responses.

Methods
We used high entropy electrical stimulation in a patient
with treatment-resistant depression (age 32 yrs, non-hispanic
white female) who had implanted current-steerable DBS elec-
trodes (4 leads, 8 contacts per lead) in subcallosal cingulate
(SCC) and the ventral capsule/ventral striatum (VCVS) re-
gions of the brain, known targets for regulating mood (Sheth
et al., 2022). The patient was recruited for a clinical trial for
individualized DBS, guided by intracranial recordings. We
delivered stimulation through Cerestim, Blackrock Microsys-
tems, using a custom-built GUI, for 3 hours, and the patient’s
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Figure 1: (a) Example high entropy stimulation sequence.
Each vertical bar pulse represents a charge-balanced elec-
trical pulse with cathode/anode first leading phase (blue/red).
Bars are shaded by the charge delivered per phase. (b)
Canonical correlations using CCA between sEEG responses
(concatenated across frequency bands) and various stimula-
tion features.

ongoing brain activity was recorded using intracranial stere-
oencephalogram (sEEG), acquired at a sampling frequency of
30KHz. Due to device constraints, the amplitude and pulse-
width parameters were limited to discrete values. We mapped
each pulse to one of 14 biphasic charge-balanced waveforms,
each with unique parameters within safety limits (Amplitude:
50 µA-1.8 mA per phase, Pulse Width: 50-180 µs, Polarity:
anode/cathode first, Phase-ratio: 1), with smoothly varying
stimulation frequency between 0 and 200 Hz.

To remove the stimulation-induced artifacts, the sEEG
signals were bipolar re-referenced and blanked adaptively
around stimulation onset. Blanked signals were then interpo-
lated using a moving-mean approach, low-pass filtered, and
downsampled to 1 KHz. We excluded channels with resid-
ual stimulation artifacts from the analyses, resulting in 108
sEEG channels. The time-varying power was computed us-
ing band-pass filtering and the Hilbert envelope with a sliding
window (1s duration, 50% overlap) in five frequency bands:
Delta-Theta (1-8 Hz), Alpha (8-12 Hz), Beta (12-20 Hz), low
Gamma (20-35 Hz), and high Gamma (35-55 Hz) for each
sEEG contact. Stimulation features (Amplitude, Pulse Width,
Charge, Frequency) were also computed for each DBS con-
tact (32 contacts) with a sliding window.

We used Canonical Correlation Analysis (CCA) to quantify
the linear associations between the individual stimulation fea-
tures (d = 32) and sEEG features (concatenated across the
five frequency bands, d = 540). Further, we used ridge re-
gression to predict the sEEG responses (spectral power in
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(b) Regression coefficients: left hemi
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(c) Regression coefficients: right hemi

Figure 2: Ridge regression: predicting power in low Gamma band using charge features (a) prediction performance across sEEG
contacts (shaded if test CC exceeds 0.1, white otherwise) (b) regression coefficients for the sEEG contacts in the left hemisphere
indicated in 2a grouped by region, and colored by the prediction performance (c) same as (b) for contacts in the right hemisphere

each frequency band, d = 108) from the stimulation inputs
(d = 32). We report the mean correlation coefficient (CC)
between the true and predicted responses in the test data.
All analyses were performed session-wise, with 6-fold cross-
validation.

Results
Canonical correlation analysis between stim features and
sEEG responses (log power in canonical frequency bands) re-
vealed that the stimulation modulates neural responses along
a low-dimensional subspace spanning 4–8 dimensions (see
Figure 1b). These canonical correlation were found to be sig-
nificant (p< 0.01, using permutation testing). The response is
sensitive to all considered stimulation parameters. For charge
and amplitude features, the magnitude of the features (AbsQ
and AbsA) showed a higher canonical correlation than when
polarity was considered (SignedQ and SignedA). This can
be attributed to the known non-linear dependence of the re-
sponses on pulse polarity. Of the features considered, the
charge features have the highest canonical correlation.

We used ridge regression to quantify the extent to which
the stimulation alone can predict the sEEG responses.
The prediction performance was highest in the higher fre-
quency bands (Beta, low Gamma, and high Gamma). Fig-
ure 2a shows the cross-validated prediction performance
when charge features (total charge delivered per phase within
the time window) are used to predict the spectral power in
the low Gamma band. The most predictable sEEG contacts
are in the pre-frontal cortex (L/R anterior cingulate, L/R su-
perior frontal gyri, L/R medial orbitofrontal cortex, and L/R
middle frontal gyri), consistent with earlier studies report-
ing pre-frontal network engagement during DBS in TRD pa-
tients (Allawala et al., 2024). For each sEEG contact, the
regression coefficients show the spatial configuration of the
DBS contacts that optimally predicts the stimulation-driven re-
sponses (see Figures 2b and 2c). Within the stimulation-
driven response subspace, VCVS stimulation has a dominant

effect across the various pre-frontal contacts in the ipsilat-
eral hemisphere compared to more localized effects of SCC
stimulation in the medial orbitofrontal cortex. Further, using
reduced rank regression reveals that a low-rank approxima-
tion of the regression coefficients matrix yields comparable
performance to the full ridge regression model (results not
shown). This finding is consistent with our observation of a
low-dimensional stimulation subspace using CCA.

Conclusion
We showed that the high-entropy stimulation paradigm can be
used to efficiently probe the effect of external stimulation on
the brain states. In particular, the stimulation modulates the
pre-frontal network responses along a low-dimensional man-
ifold. Our results highlighted the sensitivity of the responses
to the spatial configuration of the stimulation, both within and
across DBS leads. Further analyses are needed to under-
stand the effects of the temporal complexity of the stimulation,
and evaluate across-subject consistency of results. One po-
tential application of the proposed stimulation paradigm is in
closed-loop stimulation, to adaptively determine optimal stim-
ulation patterns associated with desired brain states (reflect-
ing ‘low depression severity’).
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