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Abstract
Neural circuits rely on excitatory–inhibitory (E/I) in-
teractions to support adaptive learning and decision-
making. Here, we investigate how these dynamics con-
tribute to flexible behaviour across three modelling lev-
els. First, using a simplified mean-field model of two-
choice decision-making, we examine the computational
role of selective excitation and inhibition in stabilizing
or amplifying competition between alternative choices.
Building on these insights, we embed a similar E/I mech-
anism into the preference function of a reinforcement
learning (RL) agent, showing how inhibitory feedback
modulates behavioural adaptation in reversal learning.
Finally, we assess the scalability of these principles by
training RL agents with E/I-constrained recurrent neural
networks (RNNs) in dynamic tasks. While a general E/I
architecture allows broader forms of inhibitory influence,
our results indicate it hinders learning in these settings.
In contrast, a structured architecture enforcing local in-
hibition preserves biological plausibility while maintain-
ing robust performance. Together, these findings suggest
that E/I dynamics may provide a feasible computational
mechanism for adaptive learning and decision-making.
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Introduction
Adaptive learning and decision-making are critical in dynamic
environments. A fundamental organizing principle of neural
circuits, Dale’s law (Dale, 1935), states neurons release either
E or I neurotransmitters (Eccles et al., 1954). Recurrent E/I
circuits support adaptive decision-making (Lam et al., 2022;
Najafi et al., 2020; Roach et al., 2023).

We investigate the computational role of selective E/I dy-
namics in adaptive decision-making, focusing on two canon-
ical motifs: excitatory recurrence and inhibitory feedback,
across three scales of abstraction1: (i) a two-choice E/I
mean-field model, (ii) an RL agent with E/I-structured action-
preferences, and (iii) two E/I-constrained RNNs.

Methods and Results
A Mean-Field E/I Model of Decision-Making
We use an E/I mean-field model (Wilson & Cowan, 1972) with
two decision-selective E and I populations cf. Fig.1-a in a fixed
contextual decision-making task with ambiguous input.

1Code is available at https://github.com/veronicachelu/
EI RLDM.

Results Increasing recurrent excitation (wEE) shifts dy-
namics from a single to bi-stable attractors (Fig. 1-b). Inhibi-
tion shapes dynamics based on specificity: non-specific (no
effect), ipsi-specific (compresses attractors, increases stabil-
ity; Fig. 1-c), contra-specific (enhances choice competition,
may destabilize dynamics; Fig. 1-d).

E/I in Value-Based Control

We integrate E/I dynamics into the action-preferences of an
RL agent, with E preferences encoding expected rewards
and I integrating reward prediction errors (RPE): QE(A)←
(1−α)QE(A)+αR−wIQI(A), and QI(A)← (1−α)QI(A)+
αδ, with δ = R−QE(A). Action selection follows entropy-
regularized policy updates (Bhandari & Russo, 2021): π′(a)∝

π(a)1−τ exp
(
wE QE(a)

)
, where τ regulates entropy, whereas

the precision wE controls the integration of preferences into
behaviour and encapsulates the computational role of exci-
tation without modelling the underlying dynamics explicitly.
The specificity of inhibition is controlled through an inhibitory
strength wI. We examine performance in a reversal learning
task with deterministic reward contingency shifts.

Results Under high precision (large wE, Fig. 2-a, Left),
ipsi-specific inhibition stabilizes trajectories (Fig. 2-a, Center)
and learning (Fig. 2-a, Left); contra-specific inhibition acceler-
ates adaptation but risks instability (Fig. 2-a/b, Right). Under
low precision, ipsi-specific inhibition hinders learning through
over-regularization; contra-specific inhibition facilitates faster
adaptation (not shown).

E/I in Recurrent Neural Networks

We compare two E/I-constrained RNN architectures (Fig. 3-
a) against a Vanilla RNN (no constraints): (Left) Column E/I
RNNs (ColEI) (Song et al., 2016), which have separate E/I
units with column-wise sign constraints, supporting broad in-
hibitory motifs (including global inhibition), and (Right) Dale’s
ANNs (DANNs) (Cornford et al., 2021; Li et al., 2023), fea-
turing strictly local inhibition via a reparameterization that re-
flects the two cortical motifs (E→E and E→ I→E): W=
WEE−WEIWIE, with W{EE,EI,IE} sign-constrained.

Setting (i): Fixed Contextual Task RNNs trained via
supervised learning and backpropagation through time must
sustain low pre-stimulus activity, then maintain elevation post-
stimulus for the choice corresponding to the largest input stim-
ulus (Fig. 3-b).

Results All models achieve high accuracy; E/I RNNs
learn slower, with greater variability between runs. ColEI
networks struggle more with ambiguous stimuli (not shown).
DANNs exhibit structured attractor dynamics aligned with de-



Fig. 1: (a) E/I mean-field model. (b) Recurrent excitation. Selective inhibition: (c) ipsi-specific (d) contra-specific.

Fig. 2: (a) Trajectories & (b) performance in high precision (large wE); ipsi-specific: blue, wI > 0, contra-specific inhibition: green, wI < 0.

Fig. 3: (a) RNN architectures. (a-Left) ColEI: E and I neurons are partitioned by column within each layer. (a-Right) DANN: inhibition is local
between E layers via a separate I layer. (b) Output activity traces in setting (i): Example trials from trained RNNs (c = 0.2). (c) Phase-plane
analysis: Trajectory and fixed points found, differentiating pre-, during-, and post-stimulus phases for two values of the evidence coherence c,
favouring the two choices. (d) Performance in setting (i). (e) Performance in setting (ii).

cision phases (Fig. 3-c, Right), similar to vanilla RNNs (Fig. 3-
c, Left), whereas ColEI RNNs have poor attractor separation
(Fig. 3-c, Center).

Setting (ii): Dynamic Task RNN-based agents are
trained to adaptively solve a sequence of tasks drawn from a
structured distribution of Bernoulli bandits via meta-learning—
a plasticity-based outer-loop RL algorithm (REINFORCE cf.
Williams (1992)) slowly establishes an inner-loop algorithm
that performs trial-by-trial RL using recurrent activity dynam-
ics.

Results ColEI networks learn very slowly and have high
variability over runs; constraining inhibition to be strictly local
helps optimization. DANNs demonstrate robust performance,
comparable to RNNs (Fig. 3-e).

Discussion
We investigated how two canonical E/I motifs shape adaptive
learning and decision-making across three modelling levels:

• Mean-field model: Recurrent excitation amplifies signals;
inhibition either stabilizes or enhances competition.

• RL agent: Interactions between E/I-structured preferences
modulate behavioural adaptation.

• RNNs: Column-based E/I partitioning (ColEI) impairs
learning in dynamic tasks, and inhibitory connectivity plays
a role in this. Local inhibition and unconstrained recur-
rent weights (DANNs) facilitates optimization and mitigates
these problems, ensuring robust, biologically plausible per-
formance, comparable to vanilla RNNs.
Overall, these findings highlight the computational role of

E/I interactions in modulating behavioural flexibility.
Limitations & Future Directions Future research should

focus on integrating biological details such as interneuron di-
versity, homeostasis, spike-rate adaptation, and disentangle
E/I dynamics across inner- and outer-loop learning in dynamic
tasks.
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