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Abstract 
Humans are often confronted with multiple learning 
contingencies in real-life situations. Previous 
studies suggested that people tend to learn on 
different levels of abstraction sequentially rather 
than in parallel. In a reward learning environment 
where reward is only contingent on the task 
sequence (task switching/repetition), we employed 
a hierarchical reinforcement learning (HRL) model 
to investigate if individuals dynamically shifted the 
level at which they choose to learn over time. Our 
modelling analyses suggested that participants 
gradually shifted their priority from task-level 
learning to learning task sequences. Together, our 
findings are consistent with the sequential multi-
learning hypothesis.  

Keywords: Cognitive Control; Multi-level Learning; 
Hierarchical Reinforcement Learning.  

Introduction 
Humans can learn at multiple levels of abstraction 
(Abrahamse et al., 2016; Braem et al., 2024; Collins & 
Frank, 2013; Eckstein & Collins, 2020). However, in 
everyday life, multiple contingencies are available at 
different levels of abstraction, raising the question 
whether people learn about them serially or in parallel. 
Based on previous studies (Braem et al., 2024; Bugg, 
2014; Held et al., 2024; Vallacher & Wegner, 1987), we 
argue that people may learn about different levels of 
abstraction in a more sequential manner rather than in 
parallel. More specifically, people may be potentially 
first biased towards attributing reinforcements to more 
concrete levels of information processing before turning 
to more abstract levels. 

In the present study, as an initial exploration of this 
hypothesis, we developed a HRL model to examine 
across the whole learning process whether people will 
show a shift in prioritization among multiple levels of 
learning in a reward learning environment where reward 
is only contingent on performing task switching versus 
task repetition. 

Task and Design 
We employed a voluntary task-switching paradigm 
(Figure 1), in which participants can freely choose one 
of two tasks to perform in each trial. Specifically, 

participants were presented a word for each trial, and 
they can choose to judge either if the word is living or 
non-living (i.e., Animacy task) or whether it is larger than 
a basketball (i.e., Size task). 112 participants in total 
were recruited and randomly assigned to one of two 
reward environments (i.e., reward repeat/switch 
environment), where either task repetition or task 
switching was rewarded more points with a higher 
probability. Note that the probabilistic reward 
contingencies were exclusively determined by the task 
sequence, which means that the responses, as well as 
the tasks, shares almost equal reward contingencies. 
The reward probability varied across two experiments, 
and we combined them for all the following analyses 
(Exp1: 80%/20%; Exp2: 90%/10%).  

Figure 1. Task design. 

Modeling Multi-level Learning 
Our HRL model incorporates three levels of learning. 
Specifically, it simultaneously learns and updates the 
value of state-action pairs, tasks, and control over the 
task sequence (switch versus repeat). Critically, the 
learned values of different levels are integrated 
according to the following formulas, thus allowing all 
levels of learning to contribute to decision-making: 
𝑊!"#(𝑇𝑎𝑠𝑘) = 	 𝜀$% ∙ 𝑄(𝑇𝑎𝑠𝑘|𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒) + 

(1 − 𝜀$%) ∙ 𝑄(𝑇𝑎𝑠𝑘|𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦) 
𝑊!"#(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒|𝑆𝑡𝑎𝑡𝑒) = 𝜀&' ∙ 𝑊(𝑇𝑎𝑠𝑘|𝑆𝑡𝑎𝑡𝑒) 

+(1 − 𝜀&') ∙ 𝑄(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒|𝑆𝑡𝑎𝑡𝑒) 

where the value of task sequence and task identity 
are integrated into the task-level weight, and this task-
level weight is then integrated with the learned values 
of state-action pairs into the response-level weight. 𝜀$% 
and 𝜀&' are modelled as relative weighting factors with 
which these different levels are integrated. Ultimately, 
the integrated response-level weights are used to 
generate decisions using the SoftMax rule. The values 
learned at each level are independently updated using 
separate learning rates according to the delta learning 
rule. 



Figure 2. Behavioral and model fitting results. A) Learning curves of reward rate and switch rate. B) Group-level 
and C) individual-level model comparison results. D) Estimated weighting factors. E) Model predictions of how the 
relative weight of each level of learning varies across trials. 
 

To investigate whether participants shifted their 
prioritized level of learning, we allowed the learning 
rates (i.e., Model 1), the integration weights (i.e., Model 
2), or both (i.e., Model 3) to vary over time, which 
allowed us to investigate whether (and how) the 
learning rate and relative weight on each level evolved 
during the learning process. 

Results and Discussion 
Behavior      To evaluate how reward and switch rates 
changed over time, we analyzed the data as a function 
of 16 time units (i.e., 10 trials per unit). As illustrated in 
Figure 2A, a linear mixed effect model showed a main 
effect of time on reward rate, t = 3.76, p < .001. 
Analyses on the switch rate indicated an interaction 
between group and time, t = 6.67, p < .001, showing that 
switch rate increased in the reward switch group, but 
decreased in the reward repeat group. These results 
suggested that participants gradually learned reward 
contingencies of the task sequence and adaptively 
configured more optimal levels of cognitive flexibility in 
both reward environments. 

Model Fitting      Group- and individual-level model 
comparisons both showed that Model 2 with the 

integration weights varying over time was the best-fitting 
model (Figure 2B-C).  

As shown in Figure 2D, the weight 𝜀$%  significantly 
increased across time, whereas another weight 𝜀&' 
significantly decreased as learning progressed. We 
recalculated the relative weights for each abstraction 
level and found that although the task-level weight was 
the largest at the very beginning, it decreased over time. 
In contrast, the control-level weight increased as 
learning progressed (Figure 2E). Collectively, our 
findings showed that as learning progressed, 
participants gradually shifted their prioritization from 
more concrete, subordinate task representations to 
more abstract, superordinate control representations. 

Conclusion 
Our results suggest that individuals dynamically shifted 
their prioritization of learning from first focusing on task-
level learning to task-sequence-level learning. These 
findings provide preliminary evidence supporting the 
sequential multi-level learning hypothesis. Future 
directions are to develop and test a multi-level learning 
paradigm, and models that allow for different states of 
learning (rather than gradually evolving weights). 

1 



Acknowledgement 
This project was supported by a BOF Starting grant and 
a FWO Grant (G0ABJ24N to S.B.). 

References 

Abrahamse, E., Braem, S., Notebaert, W., & Verguts, T. 
(2016). Grounding cognitive control in 
associative learning. Psychological Bulletin, 
142(7), 693–728. 
https://doi.org/10.1037/bul0000047 

Braem, S., Chai, M., Held, L. K., & Xu, S. (2024). One 
cannot simply 'be flexible’: Regulating control 
parameters requires learning. Current Opinion 
in Behavioral Sciences, 55, 101347. 
https://doi.org/10.1016/j.cobeha.2023.101347 

Bugg, J. M. (2014). Conflict-triggered top-down control: 
Default mode, last resort, or no such thing? 
Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 40(2), 567–587. 
https://doi.org/10.1037/a0035032 

Collins, A. G. E., & Frank, M. J. (2013). Cognitive control 
over learning: Creating, clustering, and 
generalizing task-set structure. Psychological 
Review, 120(1), 190–229. 
https://doi.org/10.1037/a0030852 

Eckstein, M. K., & Collins, A. G. E. (2020). 
Computational evidence for hierarchically 
structured reinforcement learning in humans. 
Proceedings of the National Academy of 
Sciences, 117(47), 29381–29389. 
https://doi.org/10.1073/pnas.1912330117 

Held, L., Vermeylen, L., Dignath, D., Notebaert, W., 
Krebs, R., & Braem, S. (2024). Reinforcement 
learning of adaptive control strategies. 
Communications Psychology, 2. 
https://doi.org/10.1038/s44271-024-00055-y 

Vallacher, R. R., & Wegner, D. M. (1987). What do 
people think they’re doing? Action identification 
and human behavior. Psychological Review, 
94(1), 3–15. https://doi.org/10.1037/0033-
295X.94.1.3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 


