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Abstract
Understanding the temporal dynamics of visual represen-
tations in the brain is a fundamental challenge. While
research has shown that neural time series data contain
rich information where many visual features can be de-
coded, less is known about how the stimulus represen-
tation itself evolves over time and how these dynamics
are related to feature decodability. Here, we investigated
these questions using EEG recordings from subjects
viewing everyday objects. We found that the dimensional-
ity of stimulus-related variance rapidly increases to nearly
full rank after stimulus onset and is sustained for several
hundred milliseconds. During this time, the underlying
representations oscillate, with every latent dimension un-
dergoing multiple sign flips. Interestingly, the time course
of feature decodability closely corresponds to the window
of high-dimensionality, and temporal-generalization pat-
terns of above- and below-chance decoding accuracies
correspond to sign flips of the representational dimen-
sions. Furthermore, we found that behavioral features
and neural network representations each capture only a
subset of the neural dimensionality, suggesting that sig-
nificant portions of neural activity represent information
not accounted for by current measures. Together, our
findings show that natural images elicit rapidly fluctuat-
ing high-dimensional representations, encoding rich sen-
sory information that has yet to be explained by state-of-
the-art behavioral and computational models.
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Introduction
How neural representations of visual information change
over time remains a central question in neuroscience. Re-
search demonstrates that various visual features can be de-
coded from neural time series data such as EEG and MEG
(Grootswagers, Wardle, & Carlson, 2017; Contini, Wardle, &
Carlson, 2017), showing that neural signals contain rich in-
formation about visual processing as it unfolds. Importantly,
neural representations remain stable only within limited time
frames (Isik, Meyers, Leibo, & Poggio, 2014; Carlson, Tovar,
Alink, & Kriegeskorte, 2013), suggesting dynamic visual cod-
ing in the brain.

Despite our ability to decode visual features from neural sig-
nals, we lack an understanding of what properties of neural
activity determine visual processing dynamics. Most studies
focus on when information can be decoded (Bankson, Hebart,
Groen, & Baker, 2018; Teichmann, Hebart, & Baker, 2024)
rather than characterizing how neural representations evolve
in their geometric properties. Recent theoretical frameworks
suggest neural dimensionality constrains computational ca-
pacity (Stringer, Pachitariu, Steinmetz, Carandini, & Harris,
2019; Gauthaman, Ménard, & Bonner, 2024), but few studies
have examined how dimensionality relates to temporal decod-
ing patterns in visual processing.

Here, we investigated EEG data dimensionality from the
THINGS-EEG2 dataset (Gifford, Dwivedi, Roig, & Cichy,
2022) in relation to decoding both behavioral features (Hebart
et al., 2023) and visual neural network representations
(Radford et al., 2021). Our findings show that the dimen-
sionality of EEG signals rapidly increases following stimulus
onset and tracks the decodability of both behavioral and DNN
embeddings over time. We find that previously documented
patterns of above- and below-chance accuracies in temporal-
generalization analyses (King & Dehaene, 2014; Carlson et
al., 2013) are associated with the shared dimensionality of
neural representations across time points. Notably, the shared
space between neural data and features (both behavioral and
model-based) has substantially lower dimensionality than the
EEG signal itself, revealing aspects of neural activity that
elude current models of visual-feature representation.

Methods

Time series dataset We analyzed the THINGS-EEG2
dataset (Gifford et al., 2022), comprising EEG recordings from
10 participants viewing objects from the THINGS database
(Hebart et al., 2023). We focused on 17 channels from oc-
cipital and parietal cortex. The train set includes responses
to 16,540 unique images (4 repetitions each), and the test set
includes 200 images (80 repetitions each).

Features of interest We examined two feature types: 66
behavioral features from the THINGS dataset (Hebart et al.,
2023) derived from a triplet odd-one-out behavioral task, and
model features from the first and last Identity layers of Open-
CLIP ResNet50 (Radford et al., 2021; Ilharco et al., 2021).
Following Conwell, Prince, Kay, Alvarez, and Konkle (2024),
we determined the number of projections via the Johnson-
Lindenstrauss lemma and applied sparse random projection
to the model activations, resulting in 8,336 dimensions.

Linear mapping and temporal generalization We trained
ridge regression (α = .01) to predict features from neural data
in the train set, computing Pearson correlations between pre-
dicted and actual values in the test set. Neural data were
averaged across repetitions. For temporal generalization, we
applied decoder weights from each time point to all other time
points.

Dimensionality For EEG dimensionality, we fit PCA on
training neural data, split the test data into random halves,
and computed Pearson correlations between these projec-
tions (Stringer et al., 2019; Gauthaman et al., 2024). For
shared space dimensionality, we fit PLSSVD under the same
procedure as regression and computed correlations between
projections of test data and features onto the shared space.
Given the correlation results from the above analyses, we con-
ducted cluster-based nonparametric tests (Maris & Oosten-
veld, 2007) for each dimension across all times, calculating
positive dimensionality as the number of dimensions signifi-
cantly above null, and negative dimensionality as those signif-
icantly below null.



Figure 1: a) Time course of decoding for behavioral features
and early and late ResNet50 layers compared with EEG di-
mensionality. Solid lines underneath show significant above-
chance decoding periods, which align with high EEG dimen-
sionality. Shaded areas represent standard error of mean
across subjects. b) Temporal generalization matrices for fea-
ture decoding (left) and EEG latent dimensions (right) reveal
a correspondence between decoding accuracy and shared di-
mensionality patterns. Oscillations of neural latent dimensions
give rise to above- and below-chance accuracies for feature
decoding. Shaded cells indicate non-significant values.

Results & Discussion
Our analyses reveal a relationship between neural dimension-
ality and the temporal dynamics of visual representations. As
shown in Figure 1a, EEG dimensionality increases sharply af-
ter stimulus onset, peaking between 150-350ms before grad-
ually declining. Notably, the EEG data approaches full rank
during this peak period despite the high signal spread across
channels and low signal-to-noise ratio that are typically inher-
ent to EEG measurements (Michel & Brunet, 2019), suggest-
ing remarkably structured neural responses to visual stimuli.
This profile closely tracks periods of significant decoding of
both behavioral and model features from EEG data, suggest-
ing an association between neural geometric structure and
feature decodability.

The temporal generalization matrices (Figure 1b) demon-
strate time-specific neural representations, with shared di-
mensionality tracking significant above-chance decoding
scores. Interestingly, previous studies have reported signifi-
cantly below-chance generalization across certain time points
(King & Dehaene, 2014; Carlson et al., 2013), which we also
observe. By computing negative shared dimensionality, we
characterize these representational inversions up to full rank,
rather than only the target features.

When comparing the dimensionality of EEG data with that
of shared spaces between EEG and visual features (Figure 2),

Figure 2: EEG dimensionality compared to shared-space di-
mensionality between EEG and various visual features. The
consistently lower shared-space dimensionality indicates that
both behavioral and model features capture only a subset of
the high-dimensional neural signal. Shaded areas represent
standard error of the mean across subjects. Insets show cor-
relation by rank at two time points , with markers indicating
dimensions significantly above chance.

EEG data maintains up to 15 significant dimensions on av-
erage during peak processing, while the shared space with
behavioral features reaches only about 7 dimensions. The
shared space with model features captures more dimensions
than behavioral features, with early features better aligning
with initial processing and late features with sustained pro-
cessing. These model representations, however, still account
for only a portion of the EEG dimensionality, which is full rank.
This suggests that representational dynamics of visual con-
tent extend beyond what can be characterized through behav-
ioral or model-based features, pointing to aspects of neural
activity not captured by our current understanding of visual in-
formation processing.

Our findings highlight dimensionality as an important aspect
of neural information processing. By computing the geometric
properties of temporal generalization, we provide a framework
that reveals patterns in how neural codes evolve over time.
Critically, the substantial unexplained dimensions we’ve iden-
tified in EEG signals—beyond both behavioral features and
computational models—suggest that neural activity contains
rich dynamic information beyond what current feature-based
decoding analyses reveal.
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