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Abstract
Testing enhances memory more than studying. Although
numerous studies have demonstrated the robustness of
this classic effect, its neural and computational origin re-
mains debated. Predictive learning is a potential mech-
anism behind this phenomenon: Because predictions
and prediction errors (mismatch between predictions and
feedback) are more likely to be generated in testing (rel-
ative to in studying), testing can benefit more from pre-
dictive learning. We shed light on the testing effect from
a multi-level analysis perspective via a combination of
cognitive neuroscience experiments (fMRI) and computa-
tional modeling. Behaviorally and computationally, only a
model incorporating predictive learning can account for
the behavioral patterns and the robust testing effect. At
the neural level, testing and prediction error both acti-
vate the canonical reward-related brain areas in the ven-
tral striatum, insula, and midbrain. Crucially, back sorting
analysis revealed that activation in the ventral striatum,
insula, and midbrain can enhance declarative memory.
These results provide strong and converging evidence for
a predictive learning account of the testing effect.

Keywords: Testing effect; Predictive learning; fMRI; Ventral
striatum; Insula.

Introduction
A remarkable finding is the testing effect, the robust phe-
nomenon that testing enhances declarative memory retention
more effectively than studying (Roediger & Karpicke, 2006).
Accordingly, many learning apps such as Duolingo and Khan-
migo are increasingly advocating users to have tests and re-
trieval, rather than restudy. However, the cognitive and neural
origins of the testing effect remain a topic of debate. Here,
we report and test an emergent predictive learning account
(Chen, Hauspie, Ergo, Buc Calderon, & Verguts, 2025) as the
cognitive and neural origin of the testing effect.

Predictive learning implies that minimizing prediction er-
rors is a key objective for learning (Sutton & Barto, 2018).
This is a foundational principle in computational approaches
to learning (including in Artificial Intelligence) and has more
recently found its way into human declarative memory as well
(Calderon et al., 2021). Indeed, several studies have demon-
strated that prediction errors can significantly promote declar-
ative memory (Ergo, De Loof, & Verguts, 2020). For example,
a student might initially predict that a dolphin is a type of fish,
but is then corrected that it is, in fact, a mammal. Here, pre-
diction errors can restructure and cement the student’s infor-
mation (neural representations) in memory.

Of importance for the present purpose, predictive learning
are more likely to appear in testing, not in studying (Chen et
al., 2025). Indeed, testing provides more opportunities to pre-
dict possible answers, which are absent in mere studying. The
mismatch between predictions and subsequent feedback gen-
erates prediction errors driving learning. Besides, prediction
errors are proven to localize in the midbrain across animal

species including rodents (Eshel, Tian, Bukwich, & Uchida,
2016), macaques (Schultz, Dayan, & Montague, 1997), and
humans (Daniel & Pollmann, 2012), where they are encoded
by dopamine bursts. Recent studies suggest that the effect of
prediction error on declarative memory can be fully mediated
by the neural activation in the ventral striatum (VS) (Calderon
et al., 2021), a key region for dopamine release. Based on
these results, we propose a novel dopamine neural basis (VS)
for the testing effect and suggest that this neural basis can be
explained from a predictive learning perspective. To substan-
tiate this account, we employed a combination of cognitive
neuroscience (fMRI) experiments and computational model-
ing techniques to investigate whether the testing effect and
predictive learning share the same neural basis in the VS.

Methods
Experiment
Our declarative memory task consisted of four phases de-
signed to help participants learn 90 Dutch-Swahili word pairs
in the MRI scanner (Figure 1A). In Phase 1, participants un-
derwent initial learning, during which each word pair was dis-
played on the screen for 3 seconds. This phase ensured
that participants acquired initial knowledge for the subsequent
tests. Phase 2 involved a no-feedback assessment to control
participants’ initial learning performance. During this phase,
participants selected the correct Swahili translation for a given
Dutch word from four options and rated their confidence in
their choice. Their accuracies and confidence ratings could
be used to identify the learning status before formal manipula-
tions. The primary variable, Test vs. Study, was manipulated
in Phase 3. Participants selected the correct Swahili transla-
tion of a Dutch word, either from four boxed options (classified
as “test trials”) or from a single boxed option containing the
correct answer (classified as “study trials”). After making their
selections, participants rated their confidence and received
feedback with the correct answer. Phase 4 consisted of two
final assessments without feedback, with the same procedure
as that of Phase 2.

Model simulations
We developed an associative memory neural network with
an English input layer and a Swahili output layer, with each
unit representing an English or Swahili word (Figure 1B).
This model first initialize the connections between English and
Swahili units by the equation below:

w0
i j = α× (c2

i j + c3
i j)

In this equation, c2
i j and c3

i j represent the confidence ratings
from Phase 2 and 3, respectively. The relationship between
confidence ratings and initial connections was scaled by pa-
rameter α.
After initialization, this model would receive testing or studying
trials and implement predictive learning or/and Hebbian learn-
ing (a passive learning principle without prediction) to update
the connections, followed by a final assessment.
On studying trials, the model could only implement Hebbian



Figure 1: A, Experimental design. B, Model architecture (Model 1: Initial learning; Model 2: Hebbian learning; Model 3: Predictive
learning; Model 4: Initial + Hebbian learning; Model 5: Initial + predictive learning; Model 6: Hebbian + predictive learning; Model
7: Full model). C, Behavioral results and model simulations. D, Test (vs. study), prediction error, and final assessment accuracy
share the same neural basis in the ventral striatum and insula

learning by the equation below, as no predictions are involved
in these trials.

∆wi j = β× xi × y j × r j

In this equation, the model updated the weight wi j only when
a reward r j was present (i.e., when feedback was positive). In
contrast, testing trials could implement either Hebbian or pre-
dictive (or both) learning, with predictive learning implemented
by the equation below:

∆wi j = β× xi × (y j − ŷ j)

Here, the model updated the weight wi j based on the error be-
tween the actual feedback y j and the model’s prediction ŷ j. A
total of 7 models were built based on all possible combinations
of initial learning, Hebbian learning, and predictive learning.

Results and Discussion
Behavioral patterns are depicted in Figure 1C (top-left panel),
which replicate the robust testing effect (χ2(1,N = 48) =
6.382, p = .012). Besides, the testing effect became stronger
(χ2(1,N = 48) = 81.702, p < .001) after controlling feedback
and confidence ratings in Phase 3. Importantly, model com-
parison (Figure 1C; top-right panel) by wAIC (larger means
better) suggests that the best fitting model is the model with
initial learning and predictive learning (Model 5). Indeed, the
model with initial learning and predictive learning successfully
mimic the human behavioral pattern and the incorporated test-
ing effect (Figure 1C; bottom-left panel). Additionally, we es-
timated the trial-level prediction errors (rounded to one dec-
imal place) using Model 5. The estimated prediction errors

influence the final assessment accuracy in a W-shaped pat-
tern (Figure 1C; bottom-right panel), indicating that both highly
positive and highly negative prediction errors can enhance
declarative memory. The high final assessment accuracy in
the zero prediction error condition may just reflect good initial
learning. Finally, the fMRI analysis (Figure 1D) suggests that
both testing (vs. studying) and prediction errors (estimated by
Model 5) can trigger the VS, insula, and midbrain activations
during feedback onset (Phase 3). Moreover, Stronger activa-
tions in the VS, insula, and midbrain during feedback onset
are associated with correct, as opposed to incorrect, final as-
sessments in Phase 4. Importantly, testing, prediction error,
and final assessment related brain regions overlap in the VS
and insula.

In summary, the current study supports the notion that the
testing effect originates from predictive learning, as evidenced
by cognitive neuroscience and modeling findings. Notably,
the testing effect represents just one instance of a broader
range of active learning strategies that emphasize active pre-
dictions. Predictive learning may not only serve as a spe-
cific mechanism underlying the testing effect but also offer a
broader cognitive framework for general active learning ap-
proaches, such as generation effect (Bertsch, Pesta, Wiscott,
& McDaniel, 2007), problem-based learning (Wood, 2003),
and error-driven learning (Butterfield & Metcalfe, 2001).
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