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Abstract
Relational reasoning is a cornerstone of higher-order
cognition in humans and animals, enabling zero-shot
generalization to novel situations using rules like tran-
sitivity. In the real world, agents need to flexibly de-
cide when to apply these rules and when to learn excep-
tions from them. It has remained unclear how standard
learning systems can accomplish this. To investigate this
topic, we introduce a new task paradigm: transitive infer-
ence with exceptions. This requires subjects to infer an
ordered relation and generalize using the transitive rule
but also requires them to memorize a certain violation to
this rule. We use a standard statistical learning system
to understand the minimal inductive biases necessary to
perform this task. Intriguingly, these models can gen-
eralize where possible and memorize exceptions where
necessary. However, successful generalization depends
on their representational geometry: an overly conjunc-
tive representation yields a systematic pattern of errors
in generalization. Ultimately, we introduce a novel task
paradigm for understanding relational reasoning in the
real world, explain how a standard learning system can
generalize on this task, and make systematic predictions
for human behavior.
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Introduction
Humans and animals can use rules like transitivity to solve
relational problems (for example, if A > B and B > C, then
A >C) (Halford et al., 2010). Yet, the real world exhibits many
exceptions to these simple rules. Exceptions in rule learning
offer a way to mechanistically break down a more complex
reasoning process. In behavioral studies, exceptions drove
computational models of human behavior to construct excep-
tion representations that were both differentiated from normal
items and integrated based on shared characteristics (Xie &
Mack, 2024). Although learning systems need suitable “re-
lational inductive biases” to learn such rules for generaliza-
tion (Battaglia et al., 2018), it’s currently unclear how they can
both flexibly learn relational rules and memorize exceptions to
those rules.

To investigate this problem, we introduce a new task
paradigm, transitive inference (TI) with exceptions, and ana-
lyze how a standard statistical learning model (a kernel model)
behaves in this task. Transitive Inference (TI) is a classical re-
lational reasoning task that tests the ability to generalize a re-
lational order across objects (McGonigle & Chalmers, 1977).
Subjects learn from a set of adjacent pairwise comparisons
for which there is an implicit rank order (A > B, B > C, . . . ,

F > G). After training, subjects are tested on their perfor-
mance on non-adjacent pairs (e.g. AD; see Fig. 1). In our
new task, subjects are trained on an additional violation to the
transitive rule (e.g. E > C). This creates a non-transitive or-
dering enclosed by the exception.

Figure 1: TI with exceptions paradigm. Training cases consist
of adjacent items (e.g. A > B, B >C) plus one exception pair
(e.g. E >C).

Methods

We employ a minimal models approach to investigate our
question. We assume that each input is represented by a
one-hot vector (X ) for each of the two items. The simplest
model, a direct linear readout, can only encode transitive re-
lations (Lippl et al., 2024) and is therefore unable to mem-
orize the exception. Thus, we increase the complexity by
one step, considering a random weights neural network with a
fixed hidden representation g(X ,Y ) and a learned linear read-
out w ◦ g(X ,Y ). We assume that f (X ,Y ) > 0 implies X > Y
and f (X ,Y ) < 0 implies X < Y . On the training set, we train
the model to output f (X ,Y ) = 1 if X > Y and f (X ,Y ) = −1
if Y > X , using gradient descent over mean squared error. At
convergence, these models identify the readout weights cap-
turing the training set with minimal L2-norm, a standard sta-
tistical inductive bias (Gunasekar et al., 2018). Finally, we as-
sume that larger margins (i.e. higher magnitude of the output)
indicate greater performance, as measured by e.g. reaction
time or accuracy.

Previous work has shown that in the infinite width limit, the
trial-by-trial similarity fully determines model behavior. The
representational similarity of trials ⟨g(X ,Y ),g(X ′,Y ′)⟩ con-
verges to simply 3 values, depending on whether trials are
identical (X = X ′ and Y = Y ′), overlapping (X = X ′ or Y =



Y ′), or distinct (X ̸= X ′ and Y ̸= Y ′). The specific values are
determined by the network architecture (Lippl et al., 2024).

Results

Figure 2: Emergent ranking system learned by the model.
(α = 0.2, exception pair of BE ).

Standard statistical learning models implement
memorization of the exception and a flexible
transitive inductive bias

Lippl et al. (2024) previously found that this standard statistical
learning model generalizes on the standard TI task by learn-
ing an implicit and emergent ranking system. Here we find
that the model also learns such a ranking system on TI with
exceptions, determining its test output for non-adjacent items
by subtracting the ranks for each item: f (X ,Y ) = r(X)−r(Y ).
This ranking system majorly depends on α, the conjunctivity
factor. Intuitively, α encodes whether the network ranges from
fully “itemic” (α = 0) to fully conjunctive (α = 1).

Comparing the ranking systems on TI vs TI with exceptions
shows an additional anti-tonic ranking as a result of the excep-
tion (Fig. 2). Analysis shows that this second ranking system
is always counter to the original TI ranking system, which pre-
dicts that TI with exceptions will always be a more difficult task
(i.e. a task yielding smaller margins).

By varying the conjunctivity factor, we can determine when
generalization first fails for a fixed list length and exception
position. For example, through numerical simulations, on an
item list of 7 and the exception pair of CE, we find that an α <
0.3 is necessary for generalization (see Fig. 3). Intriguingly,
our analysis shows that increasing the generalizable list length
(i.e. the number of items outside the exception length) greatly
increases the difficulty of the task compared to increasing the
exception length.

Model predictions for human and animal behavior

Ultimately, our model and analytic expression allow us to make
predictions on human and animal behavior on this new task.
Since adding an exception decreases the margin across tri-
als, TI with exceptions will always have a higher task difficulty
than without exceptions. Additionally, due to the reversal in the

Figure 3: We can determine the smallest α for which the
model fails to generalize, as a general measure of task dif-
ficulty. This is determined using critical pairs, the first pair of
items which fail. The model will generalize between 0 < x <
αbreaking. The exception pair is PQ.

rank representation, items later in the hierarchy that are en-
closed by the exception will have comparatively higher ranks.
This is another direct violation of the “symbolic distance” ef-
fect, similar to the violation caused by the “memorization” ef-
fect in the original TI task (Vasconcelos, 2008). Notably, this
added complexity points to an area of the list that could plau-
sibly develop a more complex separate representation to deal
with non-transitivity.

Discussion
Our work contributes to a systematic understanding of rela-
tional generalization in the face of exceptions — an important
yet understudied ability. We found that despite their simplic-
ity, standard statistical learning models are able to generalize
successfully on this task by memorizing violations to transi-
tive rules while also flexibly adapting its own transitive rule.
By deriving exact analytical solutions, we pinpoint the mecha-
nism by which these models accomplish this. In particular, this
analysis highlights that successful generalization depends on
their representational geometry. We also make several sys-
tematic behavioral predictions that should be tested in hu-
man experiments. Finally, we have used generic statistical
learning models, drawing a potential connection to behavioral
paradigms investigating probabilistic statistical learning (as
these same models could be used to model those paradigms
(Jäkel et al., 2009; Seger and Peterson, 2013; Willmore et
al., 2010)). Future work should investigate whether represen-
tation learning mechanisms can overcome the model’s sen-
sitivity and test these model predictions in human behavioral
studies.
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Jäkel, F., Schölkopf, B., & Wichmann, F. A. (2009). Does cog-
nitive science need kernels? Trends in Cognitive Sci-
ences, 13(9), 381–388. https://doi.org/10.1016/j.tics.
2009.06.002

Lippl, S., Kay, K., Jensen, G., Ferrera, V. P., & Abbott, L. F.
(2024). A mathematical theory of relational general-
ization in transitive inference. Proceedings of the Na-
tional Academy of Sciences, 121(28), e2314511121.
https://doi.org/10.1073/pnas.2314511121

McGonigle, B. O., & Chalmers, M. (1977). Are monkeys logi-
cal? Nature, 267 (5613), 694–696. https://doi.org/10.
1038/267694a0

Seger, C. A., & Peterson, E. J. (2013). Categorization = de-
cision making + generalization. Neuroscience &
Biobehavioral Reviews, 37 (7), 1187–1200. https : / /
doi.org/10.1016/j.neubiorev.2013.03.015

Vasconcelos, M. (2008). Transitive inference in non-human
animals: An empirical and theoretical analysis. Be-
havioural Processes, 78(3), 313–334. https : / / doi .
org/10.1016/j.beproc.2008.02.017

Willmore, B. D. B., Prenger, R. J., & Gallant, J. L. (2010). Neu-
ral representation of natural images in visual area v2.
Journal of Neuroscience, 30(6), 2102–2114. https :
//doi.org/10.1523/JNEUROSCI.4099-09.2010

Xie, Y., & Mack, M. L. (2024). Reconciling category excep-
tions through representational shifts. Psychonomic
Bulletin & Review, 1–13. https : / /doi .org /10 .3758/
s13423-024-02501-8


