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Abstract

Animals can adapt to novel environments with minimal
exploration and rapidly adjust to change. While the hip-
pocampus is thought to encode spatial and other behav-
iorally relevant information to support this, how it does
so with such efficiency remains unclear. Here, we show
that behavioral time-scale synaptic plasticity (BTSP) cou-
pled with replay can allow the hippocampus to learn a
predictive map—known as the successor representation
(SR)—after minimal exploration. Reward-induced BTSP
events bias this map to over-represent reward locations,
biasing behavior based on this representation toward re-
ward, and replay events extend this bias to locations far-
ther from the reward. Notably, the representation dy-
namically adjusts when reward locations shift, support-
ing rapid behavioral adaptation. Together, our findings
offer a biologically plausible account of how BTSP and
replay jointly enable quick adaptation of the SR, support-
ing efficient and adaptive learning.
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Animals can be remarkably fast and efficient reinforcement
learners. In maze tasks (Fig. 1a), rodents rapidly learn both
the structure of the environment and the location of the re-
ward, often within just a few trials (Dong, Madar, & Sheffield,
2021; Sosa & Giocomo, 2021). When the reward is moved
to a new location, they quickly begin navigating toward the
new reward location (Ambrose, Pfeiffer, & Foster, 2016; Carey,
Tanaka, & van der Meer, 2019; Gauthier & Tank, 2018).

The hippocampus is thought to be a key brain region sup-
porting efficient learning. A hallmark observation is the rapid,
often one-shot, formation of place cells—neurons that fire
at specific locations in an environment (O’Keefe, 1976). A
synaptic learning rule known as behavioral time-scale plastic-
ity (BTSP) has recently been proposed to underlie this rapid
place field formation (Fig. 1b) (Bittner, Milstein, Grienberger,
Romani, & Magee, 2017). BTSP operates over seconds-long
timescales and induces large, one-shot synaptic changes. In
CA1, BTSP is modulated by reward and exhibits temporal
asymmetry (Fig. 1b), suggesting a role in reward prediction
(Li, Briguglio, Romani, & Magee, 2024). Beyond spatial cod-
ing during exploration, the hippocampus generates internally

structured sequences of place cell activity during rest or im-
mobility (Gupta, van der Meer, Touretzky, & Redish, 2010).
These replays are believed to support offline learning by con-
solidating experiences even in the absence of physical move-
ment (Dong et al., 2021; Frank, Stanley, & Brown, 2004).

Successor representationMaze exploration
a

b

c

Time from plateau (s) State

BTSP (Bittner, 2017)

(Stachenfeld, 2017)

CA3
CA1

∆V
m

0-3-6 63

0

S1 S2 S3 S4 S5 S6 S7

p(
vi

si
t|S

2)

S1 S2 S3 S4 S5 S6 S7

p(
vi

si
t|S

6)

Figure 1: a, Simple linear maze task. A rat explores the maze
from left to right. b, BTSP-induced synaptic updates at a
CA3 (blue) and CA1 (red) synapse. The y-axis indicates the
change in membrane potential of a synapse onto an initially
silent cell, before and after BTSP. c, Predicted probability of
visit under the SR framework during linear maze exploration.
The animal’s direction on movement reflects the SR, based on
its travel history.

Here, we link these ideas to the proposal that place cells en-
code a successor representation (SR)–the expected future oc-
cupancy of states given the current one (Fig. 1c) (Stachenfeld,
Botvinick, & Gershman, 2017). The SR allows the structure
of state transitions to be learned independently of rewards,
and can later integrate reward signals to support fast, flexible
value-based behavior. We show that even without explicitly
encoding value, BTSP in CA1 can lead to a reward-biased
SR which, when combined with replay, drives rapid shifts in
behavior toward previously rewarded locations.

Methods

We modeled a hippocampus with two layers, CA3 and CA1,
each with 2,100 neurons (Fig. 2a), drawing on biophysically
informed models (Ecker et al., 2022). CA3 included recur-
rent connections and projected feedforward to CA1. Neu-
rons could produce action potentials (APs) and dendritic
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Figure 2: a, Schematic of the hippocampal network b, Schematic of pre- and post-synaptic neuronal activity trace. c, Schematic
of linear maze task. d, CA3 and CA1 weight matrices after 6 trials. e, Skewed place fields of representative reward-sensitive and
non-reward place cells. f, Spontaneous replay events during 3 seconds of offline activity. g, Markov transition matrices before
(left) and after (right) replay. h, 10-step state transition probabilities before (left) and after reversal (right).

plateau potentials (PPs); APs were driven by presynaptic in-
put, while PPs were triggered stochastically by depolariza-
tion, and, in CA1, the presence of reward (Milstein et al.,
2021). APs created time-decaying eligibility traces (ETs) on
outgoing synapses, and PPs produced time-decaying ’instruc-
tive signals’ (ISs) (Fig. 2b). When a PP occurred, incoming
synapses were updated based on the time-integrated product
of each incoming synapse’s ET and the neuron’s IS (Milstein
et al., 2021). This causes the weights between pre-and post-
synaptic neurons with different temporal offsets to be struc-
tured as in Fig. 1b. The longer decay constant for the IS in
CA1 resulted in temporally asymmetric BTSP kernel (Fig. 1b).
Both recurrent and feedforward projections were randomly
initialized with small weights. While 80% of CA3 neurons
were designated as place cells and received hard-wired spa-
tial input, CA1 neurons received input only from CA3 via ran-
dom weights and were expected to develop place-specific re-
sponses through maze traversals. We used a linear maze
and simulated traversals from the center to each end over a
series of trials (Fig. 2c). The first two trials (one in each di-
rection) served as a familiarization phase without reward. Re-
ward was positioned at the left end for the next four trials, then
switched to the right end for the last four trials. On rewarded
trials, the simulated agent stayed at the reward position briefly,
consistent with animals’ behavior in rewarded arms of a maze
(Gillespie et al., 2021). To examine replay during rest, we
introduced low-intensity, random input to CA3 for 3 seconds
after trials 6 and 10. During this phase, we used adaptive
integrate-and-fire models which support replay (Ecker et al.,
2022), and continued updating weights using the BTSP rule.

Results

We found that BTSP enables an SR-like cognitive map, con-
necting place cells with neighboring place fields. After trials 1-

6, we sorted cells into 14 spatial bins based on their acquired
place-field locations, averaging synaptic weights to and from
cells in each group (Fig. 2d). The CA3 network developed
a robust SR-like map, with generally symmetric weights con-
necting nearby locations, over-representing the reward site
from the longer time spent there. In CA1, the asymmetric
BTSP kernel led to a directional bias: synapses from start po-
sition cells toward terminal position cells were stronger than
the reverse, especially near the reward site, which was very
strongly represented (Fig. 2e). We next examined replay dur-
ing the offline phase (Fig. 2f). After trial 6, the network gener-
ated SWRs and sequential firing patterns traversing the maze.
Neither feature was exhibited prior to learning.

Next, we examined whether the SR map biases the agent’s
behavior toward reward, and how replay affects this. We dis-
cretized the maze into 7 states, S1 (left) to S7 (right) (Fig. 2h,
top). We simulated the agent starting at S4 (center), moving
until reaching either end, with state transitions based on the
center positions of the CA1 place fields of cells active when
the agent was positioned at the center of each discrete state
(Fig. 2g). Using the learned network after two reward expo-
sures but prior to the offline phase, the agent preferred the
reward state S1 when near it (at S2), but this preference weak-
ened farther away (from S3) (Fig. 2g, left). After the offline
phase, the updated transition matrix revealed a stronger ten-
dency to move toward the reward, even from earlier positions
(Fig. 2g, right). Replay significantly increased the likelihood of
reaching the reward site within 10 steps (Fig. 2h, left), mea-
sured by taking the transition matrix to the 10th power.

Finally, we tested rapid adaptation to the new reward po-
sition. After two traversals in both directions, with the sup-
port of replay, the agent did exhibit rapid adaptation, show-
ing a higher probability of reaching the new reward site at S7
(Fig. 2h, right).



Conclusion
Combining BTSP and replay provides a biologically plausible
mechanism for rapidly forming and adapting cognitive maps in
the hippocampus. BTSP enables both rapid formation of place
fields and replay, rapidly forming an SR that adapts to shifting
rewards and enhances prospective decision-making. We see
these findings as a step toward a unified framework connect-
ing cellular plasticity, network dynamics, and reinforcement
learning, advancing our understanding of how the hippocam-
pus supports fast, flexible learning.
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