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Abstract
Neural spike trains, which represent the spiking activ-
ity of neural population over time, provide critical in-
sights into how the brain encodes information and gen-
erates behavior. Despite significant advances, the ex-
tent to which these spike trains encode behavioral vari-
ables—particularly movement—remains not fully under-
stood. In this study, we compare the performance of
linear and nonlinear models in predicting behavior from
neural spike trains, focusing on how prediction accuracy
varies with different temporal lags between neural activ-
ity and movement onset. Furthermore, we examine how
prediction performance depends on the specific brain re-
gions from which the neural signals are recorded. Our
findings provide new insights into the behavioral decod-
ing with respect to both the temporal structure of neural
spike activity and the specificity of brain regions.
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Introductions
Understanding how the brain uses neural activity to gener-
ate behavior is a central question in systems neuroscience.
Neural spike trains, which reflect time-varying activity of neu-
ronal populations, offer rich information due to their high tem-
poral resolution. Despite advances in recording and mod-
eling, it remains unclear how well these signals encode be-
haviorally relevant variables, particularly movement. Various
models have been used to decode behavior from spike trains,
ranging from linear approaches to deep nonlinear architec-
tures. For instance, linear-nonlinear-Poisson (LNP) models
relate spiking activity to stimuli and behavior (Paninski, 2004),
and spiking neural networks have shown promise in decoding
continuous motor behavior (Kumarasinghe, Kasabov, & Taylor,
2021). While motor cortex activity is known to linearly map to
hand trajectories (Sauerbrei et al., 2020), it remains uncertain
whether decoder is predicting movement based on relevant
neural activity from related brain regions. In this study, we in-
vestigate the effect of different time lags between spike trains
and behavior on prediction performance, the influence of each
brain region on decoding performance, and compare the de-
coding performance across linear and nonlinear deep learning
models. We investigate how prediction accuracy varies with
time lags and across different brain regions, aiming to identify
how neural coding of behavior differs temporally and across
brain regions. Furthermore, we experimentally compare the
decoding of behavioral velocity and position to assess which
representation yields better predictive performance.

Method
Data
Wildtype mouse were attached head posts, food-restricted,
and trained to reach to grab a food pellet. Neural spike
trains were measured by using 384 channel four-shank sili-
con probes (Neuropixel (Steinmetz et al., 2021)). The primary

Figure 1: Data Collection. a) Behavioral task. The mouse
were trained to reach its forelimb to grab a food pellet and
consume, following a sound cue. b) Example spike train. The
spike trains were recorded across M1, thalamus, striatum,
deep cerebellar nuclei, hippocampus, and cerebellar cortex.
c) Example hand trajectory. The 3D hand trajectory of the
mouse was extracted from synchronized video recordings.

motor cortex (M1), thalamus, striatum, deep cerebellar nuclei,
hippocampus, and cerebellar nuceli activity were recorded.
The recordings were spikesorted using bombcell (Fabre, van
Beest, Peters, Carandini, & Harris, 2023) and its superunit ac-
tivity which is representing the aggregate spike activity across
the recording was binarized with 2ms bin to generate spike
trains. Recording sessions with more than 10 neurons per
brain region were selected, resulting in three sessions. Each
session contained a different number of behavioral trials, and
all trials within a session were recorded from the same set
of neurons. Spike trains were sliced from -250ms to +750ms
from movement onset which was calculated as the time where
the hand leaves the resting square box from the synchronized
lateral video recording. The sliced 1,000ms window was fil-
tered with a Gaussian kernel ( σ = 10 ), normalized via z-
scoring. The resulting firing rates were then denoised and
reduced in dimensionality using principal component analysis
(PCA). Behavioral movement was obtained by DeepLabCut
(Mathis et al., 2018). To make staggered data, we introduced
artificial action lags in range -600 ms to + 600 ms with 100ms
time bin whereas the spike data is not moved. Also to com-
pare the decoding performance for hand position and velocity
data, we applied eight-order central difference to get smoother
velocity.

Model
To evaluate the capacity of neural activity in predicting be-
havior, we implemented two distinct decoding models: a sim-
ple linear regression model and a deep neural network archi-
tecture known as FingerFlex (Lomtev, Kovalev, & Timcenko,
2023). The linear model assumes a direct relationship be-
tween spike train activity and motor output within a fixed tem-
poral window, treating neural spikes as linearly correlated with
behavioral variables without capturing nonlinear dependen-
cies or interactions. Model parameters were optimized using
standard linear regression to minimize prediction error on the



Figure 2: Fingerflex has higher R2 scores than linear regression. a) Boxplots of R2 scores for position and velocity data,
averaged over coordinates and time dimension. Each score represents a single trial. Heatmaps show R2 scores across behavior
delays for b) position data and c) velocity data using all brain regions, and across brain regions for e). d) shows the observed
and predicted behavioral data, where velocity data were converted back to position by computing the accumulated sum

training set . As a nonlinear alternative, we employed Fin-
gerFlex, a deep neural network originally developed for the
BCI Competition IV, where it achieved state-of-the-art perfor-
mance in predicting finger movements from ECoG data. We
adapted this model to process multi-unit spike trains by feed-
ing temporally binned and smoothed spike activity as input.
The network, consisting of multiple hidden layers with non-
linear activations, was trained via gradient descent to predict
behavioral outputs such as 3D hand position or velocity.

Results

Nonlinearity helps to decode neural spikes To evaluate
decoding performance, we showed the R2 scores of the lin-
ear model and the FingerFlex network with and without PCA
preprocessing in Figure 2∼a and calculated the R2 score for
each hand coordinates to make heatmap. Following a com-
mon intuition, decoding performance generally declined with
increasing action lag, confirming the intuitive notion that pre-
dicting distant future behavior is more challenging(Figure 2∼b
& Figure 2∼c). Notably, FingerFlex outperformed the linear
model across most conditions.

Decoding performance varies across spatial coordinates
Intriguingly, we’ve found that certain coordinates - especially
the coordinate represent right - consistently showed substan-
tially lower R2 scores in both models prediction with velocity
data(Figure 2∼c & Figure 2∼e). A similar observation—that
decoding performance can vary across different movement di-
rections—has also been reported in prior studies (Sauerbrei et

al., 2020). This suggests that not all behavioral components
could be equally encoded in neural activity—either in quantity
or representational structure.

Decoding performance depends on the brain region Fig-
ure 2∼e shows the decoding performance of FingerFlex and
the linear model across individual brain regions without any
action lag. The FingerFlex model extracts more structured
and informative patterns, particularly in certain time periods,
as evidenced by the presence of distinct vertical lines in the
heatmap. These vertical features could imply that neural sig-
nals from different brain regions are temporally aligned to en-
code similar behavioral events.

Discussion & Conclusion

Our results demonstrate that nonlinear models such as Fin-
gerFlex are more effective than linear models in decoding be-
havior from neural spike trains, particularly under conditions
of longer behavioral delay. The consistent drop in predic-
tion accuracy for the specific coordinate suggests that not all
movement dimensions are equally represented in neural ac-
tivity, aligning with previous literature. These findings highlight
the importance of both temporal and spatial factors in neural
coding and suggest that behavioral information is distributed
non-uniformly across neural populations. Future work will in-
vestigate how different brain regions contribute to decoding
performance across disease models, such as Angelman syn-
drome, to better understand how neurological disorders alter
population-level neural representations.



Acknowledgments
This research was supported by Korean Institute for Ad-
vancement of Technology(KIAT) grant funded by the Korea
Government(MOTIE)(RS-2024-00435997, Human Resource
Development Program for Industrial Innovation(Global))

References
Fabre, J. M., van Beest, E. H., Peters, A. J., Caran-

dini, M., & Harris, K. D. (2023, July). Bomb-
cell: automated curation and cell classification of spike-
sorted electrophysiology data. Zenodo. Retrieved
from https://doi.org/10.5281/zenodo.8172822 doi:
10.5281/zenodo.8172822

Kumarasinghe, K., Kasabov, N., & Taylor, D. (2021). Brain-
inspired spiking neural networks for decoding and under-
standing muscle activity and kinematics from electroen-
cephalography signals during hand movements. Scientific
reports, 11(1), 2486.

Lomtev, V., Kovalev, A., & Timcenko, A. (2023). Fin-
gerflex: High-precision finger movement decoding
using ecog. In 2023 ieee embs special topic con-
ference on data science and engineering in health-
care, medicine and biology (p. 101-102). doi:
10.1109/IEEECONF58974.2023.10405112

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N.,
Mathis, M. W., & Bethge, M. (2018). Deeplabcut: marker-
less pose estimation of user-defined body parts with deep
learning. Nature neuroscience, 21(9), 1281–1289.

Paninski, L. (2004). Maximum likelihood estimation of cas-
cade point-process neural encoding models. Network:
Computation in Neural Systems, 15, 243 - 262.

Sauerbrei, B. A., Guo, J.-Z., Cohen, J. D., Mischiati, M., Guo,
W., Kabra, M., . . . Hantman, A. W. (2020). Cortical pat-
tern generation during dexterous movement is input-driven.
Nature, 577 (7790), 386–391.

Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pachi-
tariu, M., Bauza, M., . . . others (2021). Neuropixels 2.0: A
miniaturized high-density probe for stable, long-term brain
recordings. Science, 372(6539), eabf4588.


