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Abstract 
Foundation models, leveraging large-scale datasets 
and extensive parameter counts, show 
unprecedented capabilities across various domains. 
Recent studies have explored foundation models for 
neuroimaging to effectively capture the complex 
dynamics of the human brain. However, training 
such models end-to-end on four-dimensional 
functional MRI data remains unexplored. Here, we 
introduce SwiFT V2, a fMRI foundation model based 
on the 4D Swin fMRI Transformer. We pre-trained 
SwiFT V2 using masked image modeling on 
large-scale aggregated resting-state fMRI datasets of 
49,321 subjects. Especially, we trained models up to 
8.8 billion parameters with maximal update 
parameterization technique, leading to stable and 
efficient scaling. We observed that these models 
follow neural scaling laws, where performance 
predictably improves with scale. Also, we showed 
that masked modeling pre-training enhances 
performance across various downstream tasks. 
These results validate the application of scaling 
principles to fMRI modeling and motivate the further 
development of large foundation models for 
neuroscience. 
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Introduction 
Functional Magnetic Resonance Imaging (fMRI) offers 
high-dimensional spatiotemporal data for understanding 
brain function, but its complexity poses analytical 
challenges. While deep learning shows promise (Abrol et 
al., 2021), task-specific models often lack 
generalizability. Foundation models, pre-trained via 
self-supervision on vast datasets (Bommasani et al., 
2021), learn versatile representations, transforming 
fields like NLP (Vaswani et al., 2017). Applying this to 
neuroscience (Caro et al., 2023; Malkiel, Rosenman, 
Wolf & Hendler, 2022) requires overcoming significant 
computational hurdles, especially for complex 4D fMRI 
data. 

This work introduces SwiFT V2, based on the 
Swin 4D fMRI Transformer (Kim et al., 2023; Liu et al., 
2021), as a scalable foundation model for fMRI. We 
investigate its scaling properties using self-supervised 

pre-training on large datasets. Key contributions include: 
(1) Training 4D fMRI Transformers up to 8.8B 
parameters via masked image modeling; (2) Using 
Maximal Update Parametrization (muP) for stable 
scaling (Yang et al., 2021); (3) Providing empirical 
evidence for neural scaling laws (Kaplan et al., 2020) in 
fMRI models; and (4) Highlighting potential for transfer 
learning to diverse downstream tasks in limited sample 
size settting. 

Methods 

SwiFT V2 Architecture 
As shown in Figure 1, SwiFT V2 employs a SwiFT, 
hierarchical transformer with efficient 4D windowed 
self-attention, as an fMRI encoder. Patch embedding 
converts fMRI volumes to tokens, and spatial and 
temporal dimensions are merged between stages.  

 
Figure 1: SwiFT V2 architecture 

 
Pre-training and Scaling Techniques 
We used self-supervised pre-training via Masked 
Image Modeling, similar to SimMIM (Xie et al., 
2022). A fraction of tokenized input patches were 
masked, and the model's encoder-decoder structure 
was trained to reconstruct the masked token values 
using an L1 loss. Pre-training utilized large 
resting-state fMRI datasets (UK Biobank, HCP, 
ABCD) of 49,321 individuals. 

To enable stable training of billion-parameter 
models, we implemented muP (Yang et al., 2021). It 
ensures a stable activation scale even when model 
width increases, confirmed via coordinate checks 
(Figure 2), allowing efficient hyperparameter transfer 
(mu-transfer) from smaller to larger models (up to 
8.8B). 



 
Figure 2: Maximal update parametrization results 

Experiments & Results 

Scaling Law Verification  
We pre-trained SwiFT V2 models across sizes up to 
8.8 billion parameters. Consistent with scaling laws 
in other domains (Kaplan et al., 2020; Zhai, 
Kolesnikov, Houlsby & Beyer; 2022), we observed a 
power-law relationship between test loss and three 
factors - the amount of compute, dataset size, and 
model size (Figure 3) using hyperparameters 
transferred via mu-transfer. Our largest model 
(8.8B), whose training is ongoing, has yet to fully 
converge to the performance suggested by this 
scaling trend. Nevertheless, increasing the model 
scale yields predictable improvements in learning 
representations from fMRI data.    

 
Downstream Task Evaluation 
To evaluate the practical utility of the learned 
representations, we fine-tuned pre-trained 1.2B SwiFT 
V2 checkpoints on various downstream tasks. Table 1 

presents preliminary results on benchmark tasks using 
limited data samples per subject (N=8-10, 1 segment 
each): predicting sex, age, and cognitive scores on 
held-out subjects from UKB, HCP, and ABCD. While 
based on minimal fine-tuning data, these initial results 
suggest potential benefits from pre-training compared to 
training from scratch. 
 

Table 1. Downstream Task Performance 
(ACC: Accuracy; MAE: Mean Absolute Error) 

Method ABCD HCP UKB 

Sex 
(ACC) 

Intelli
gence 
(MAE)   

Sex 
(ACC) 

Age  
(MAE) 

Intelli
gence  
(MAE) 

Sex 
(ACC) 

Age  
(MAE) 

Intelli
gence  
(MAE) 

From 
scratch 

50.0 0.86 50.0 3.17 16.2 50.6 7.09 1.74 

Fine- 
tuned 

50.2 0.85 57.6 3.13 16.1 56.9 6.44 1.72 

Conclusion 
We scaled the SwiFT V2 4D fMRI Transformer to 8.8B 
parameters via masked modeling and muP. Observing 
neural scaling laws validates this large-scale, 
self-supervised approach for neuroscience. Our results 
show the potential of scaled learning for fMRI, 
suggesting that continued exploration of large foundation 
models is valuable for dissecting brain dynamics and 
enhancing predictive capabilities in the neuroscience 
area. 

 

 
 

Figure 3: Neural scaling laws for SwiFT V2 
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